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The genomic landscape of molecular responses to
natural drought stress in Panicum hallii
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Environmental stress is a major driver of ecological community dynamics and agricultural

productivity. This is especially true for soil water availability, because drought is the greatest

abiotic inhibitor of worldwide crop yields. Here, we test the genetic basis of drought

responses in the genetic model for C4 perennial grasses, Panicum hallii, through population

genomics, field-scale gene-expression (eQTL) analysis, and comparison of two complete

genomes. While gene expression networks are dominated by local cis-regulatory elements,

we observe three genomic hotspots of unlinked trans-regulatory loci. These regulatory hubs

are four times more drought responsive than the genome-wide average. Additionally, cis- and

trans-regulatory networks are more likely to have opposing effects than expected under

neutral evolution, supporting a strong influence of compensatory evolution and stabilizing

selection. These results implicate trans-regulatory evolution as a driver of drought responses

and demonstrate the potential for crop improvement in drought-prone regions through

modification of gene regulatory networks.
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Drought is the greatest abiotic determinant of agricultural
yield1 and a key regulator of both ecological net pro-
ductivity and carbon sequestration2,3. Unlike annual plant

species, which can escape environmental stress through flowering
time evolution, perennial plants must persist through periods of
drought. While constitutive drought tolerance can lead to slower
growth and lower yields, there is considerable genetic variation in
the physiological nature and efficacy of facultative responses to
soil moisture variation among plants4,5. Leveraging such
genotype-by-environment interactions (GxE), especially in
response to drought, is key to crop improvement.

Despite the central role that GxE plays in adaptation and plant
productivity, the genetic basis of evolved differences in stress
responses are poorly understood, except in a handful of labora-
tory model systems. However, it is clear that gene expression
networks play particularly important roles in the evolution of
physiological GxE as transcription factors and other regulatory
elements are often environmentally induced6.

Regulatory elements fall into two main categories: distant
trans-acting modifiers (e.g. transcription factors) and local cis-
regulatory elements (e.g. promoter or coding sequence variants).
Selection works most efficiently on traits that act in isolation;
therefore, cis-elements, which typically regulate a single gene,
may be particularly important in adaptive evolution7. Conversely,
trans factors may cause correlated expression variation among
many downstream genes, which should increase interference
among loci and reduce the adaptive potential of global trans-
regulatory evolution8,9. To this end, many global regulatory ele-
ments evolve much more slowly than their target sequences10–12.
Combined, cis- and trans-regulatory elements shape the gene
expression landscape and form the basis of environmental stress
responses. Therefore, defining the regulatory elements that lead to
evolved differences in stress responses will improve our under-
standing of stress adaptation and the genetic basis of GxE.

To understand the genetic basis of drought stress tolerance in
the context of perenniality, we have developed Panicum hallii as a
genomic model for Panicoid grasses13. The Panicoideae is a
diverse subfamily of predominantly perennial warm-season
grasses with efficient C4 photosynthesis14, which imparts
drought-tolerance and some of the highest biomass production
among plants15. Not surprisingly, the Panicoideae encompasses
the most promising bioenergy feedstock crops, including
switchgrass, Sorghum, big bluestem, Miscanthus, and sugar cane.
The geographic distribution of P. hallii spans a massive moisture
availability gradient: the lowland variety (P. hallii var. filipes;
hereon filipes) inhabits riparian and coastal sites with >100 cm of
annual precipitation while upland (P. hallii var. hallii; hereon
hallii) populations are found across southwestern North Amer-
ica16 in both desert (<20 cm annual precipitation) and semi-arid
habitats. The extensive physiological diversity13 of P. hallii and its
close evolutionary relationship to key crops make it an ideal
genetic model for biotechnology development in perennial biofuel
feedstocks.

Here we present a set of experiments and analyses that dissect
the genetic basis of P. hallii drought responses, connecting DNA
sequence variation to leaf-level physiology. We first assess the
demographic history and population structure of the upland and
lowland varieties of P. hallii. To understand the scale of genomic
divergence between varieties, we compare complete de novo
genome assemblies and annotations for a single genotype of each
variety. We then explore the genetic basis of evolved drought-
responsive gene expression in an F2 mapping population.
Through eQTL mapping and comparative genomics, we
demonstrate that trans-regulatory elements and transcription
factor binding site evolution are key contributors to molecular
drought responses in P. hallii. Combined, these results and

genetic resources elevate P. hallii among the elite plant genomes,
provide the genetic model for perennial feedstocks, and begin to
decipher the complex drought-responsive genetic networks that
have diverged between upland and lowland ecotypes.

Results
Demographic history of P. hallii. Habitat divergence between
filipes and hallii is likely due to both adaptation and historical
demographic processes associated with paleo-climatic change in
North America. To explore the recent evolutionary history of
these varieties, we deeply re-sequenced (35x median sequence
coverage) 15 filipes and 78 hallii natural accessions (Supple-
mentary Data 1) spanning the USA geographic range of each
variety (Fig. 1a). Demographic models (Supplementary Figure 1)
indicated that hallii and filipes began evolutionary divergence >1
M years before present (ybp). This conclusion was confirmed by a
molecular-clock based estimate of divergence of 1.08M ybp.
Furthermore, pairwise cross-coalescence, a measure of the degree
of genetic divergence between populations17, between any two
hallii and filipes subpopulations (Fig. 1b) all declined below 0.25
at least 500k ypb (Supplementary Figure 1). These data indicate
that the two P. hallii varieties have maintained substantial
reproductive isolation over a period of intense climatic fluctua-
tions, including at least the last two glacial-interglacial cycles.

Effective population size (Ne) of the largest two hallii
subpopulations (inferred via genetic clustering, Fig. 1b) expanded
following reduction of cross coalescence until 20–100k ybp, while
Ne of the largest filipes subpopulation remained relatively stable
and ~50% smaller than any hallii subpopulations (Supplementary
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Fig. 1 Genetic structure and geographic distribution of P. hallii. One
individual was deeply re-sequenced from 94 locations across southwest
USA (a). Filled points represent the geographic location of the population
where each individual was collected. Point colors represent genetic
subpopulation assignments from STRUCTURE. The map background is
cropped from the annual precipitation (BIO12) 2.5-minute raster (http://
worldclim.org/version2) via a 10-minute United States of American state-
boundary vector shapefile (http://naturalearthdata.com). In addition to
between-variety divergence (filipes: blue, hallii: red/orange/yellow), there
was strong population structure within varieties (b); proportional
subpopulation assignment is shown in pie charts at the branch tips. Branch
lengths are proportional to the number of substitutions per variable site,
except the root branch and the internal branch connecting varieties, which
are labeled with the respective lengths; branches marked * have bootstrap
support >90%. Source data are provided as a Source Data file
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Figure 2; Supplementary Data 2) over this period. However, Ne of
all subpopulations have contracted over the last ~50k years.
Combined, these demographic patterns suggest that the current
range of hallii is similar to, or smaller than its historical
distribution and is not purely the product of a recent population
expansion. Instead, between-variety habitat differentiation is
consistent with historical range expansion of hallii into arid
regions of the North American southwest.

Development and comparison of two complete de novo gen-
omes. To test for a genetic signal of drought-associated evolution,
we developed complete de novo reference genomes for the basal
P. hallii accession (var. hallii HAL2) and a representative var.
filipes accession (FIL2) (Figs. 1b, 2a–d). These Pacific Biosciences
single molecule-based chromosomal assemblies contain 484.6 Mb
(99.4% of assembled sequence in chromosomes, contig N/L50=
15/8.3 Mb) and 508.0 Mb (94.8%, 117/1.1 Mb) of total HAL2 and
FIL2 sequence, making them among the most complete plant
genomes ever assembled (Supplementary Notes 1–2; Supple-
mentary Figure 3; Supplementary Tables 1–4). Critically, these
genomes exhibit near-perfect chromosome-scale synteny (Fig. 2d,
Supplemental Note 3; Supplementary Figure 4, Supplementary
Table 5; Supplementary Data 3). A total of 475 kb (<0.1%) of the
HAL2 genomic assembly was not collinear with FIL2, including a

0.18 Mb translocation on Chr09 and a 0.295Mb translocation
between HAL2 Chr02 and FIL2 Chr04 (Supplementary Table 5).
Additionally, a duplication was present on the proximate telo-
mere and adjacent 2.22Mb region of Chr03 and Chr08 in both
genomes. This duplication is also present in Sorghum bicolor
(Supplementary Figure 4), indicating that it is ancient and
ancestral to Panicum.

It is possible to leverage such extensive synteny to infer
sequence evolution and presence-absence variation (PAV) among
orthologous clusters of genes. This analysis was performed via our
GENESPACE pipeline (Supplementary Note 3), which employs a
multi-species orthologous gene network construction approach
constrained within collinear sequence blocks. GENESPACE
allows for construction of outgroup-rooted gene networks and
sequence alignments within duplicated (e.g. proximate Chr03 and
Chr08) and single-copy regions. Critically, by informing orthol-
ogy networks with outgroup sequences, we can determine
whether gene annotations without orthologous sequences
between HAL2 and FIL2 are derived or lost in each genome.
Overall, the majority of high-confidence gene models (41,017
genes; 80.1%) existed as either single copy (‘1:1’) orthogroups or
orthogroups with two or more members in at least one genome
(‘1:2+ ’, ‘2+ :1’ or ‘2+ :2+ ’; Table 1; Supplementary Data 4).
However, 10,176 genes (19.9% of all gene models) lacked
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Fig. 2 Synteny and structure of the P. hallii genome. The P. hallii genomes are characterized by highly genic chromosome arms and non-recombinant
pericentromeric regions. The physical size and orientation of each chromosome (minor ticks at 10Mb intervals) are plotted along the outer-most track (a).
Gene models and repetitive sequences were annotated for both assemblies - the proportional representation (in 5Mb overlapping windows) of five
annotation categories, and unannotated intergenic sequence (white), are plotted in the second track (b). A heatmap of recombination rate (cM/Mb) is
shown in the third track (c), where the darkest red represents >4% chance of a crossover event per F2 individual per Mb. The interior links (d) connect
72 syntenic blocks, which cover 369.2Mb (75.8%) of the total HAL2 assembly and 254Mb (84.5%) of the chromosome arms. Source data are provided as
a Source Data file
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annotated orthologous sequence in either HAL2 or FIL2 (Table 1;
Supplementary Data 5). These PAV genes may be the product of
annotation support thresholding, pseudogenization or true
sequence deletion in one genome.

To evaluate the evolution of these PAV genes, we compared
DNA variation between annotated coding DNA sequence (CDS)
of present genes with the unannotated assembly sequence of
syntenic orthologous regions in the other genome. The majority
of PAV genes were private to either HAL2 or FIL2 and never had
orthologous sequences in any outgroups (Table 1, Supplementary
Data 5). Other studies find that such private genes are generally of
low quality18 and may not represent novel derived CDS, but
instead are simply due to weak gene evidence that only survives
thresholding in a single genome19. Indeed, private genes were
9.6x more likely to be low confidence, with low homology or
transcript support, than 1:1 orthogroup genes.

To understand sequence variation underlying the remaining
PAV genes, which also had at least one outgroup sequence in the
network, we categorized the degree of sequence variation between
CDS and un-annotated DNA sequence of the alternative genome
into un-annotated (>90% sequence identity), pseudogenized
(90–10% identity), and deleted ( < 10% identity) groups (Table 1).
Like the private gene models, the 296 un-annotated gene models
were much more likely to be low confidence than genes with 1:1
orthologs (Fisher’s test odds ratio= 11.0 × , P < 1 × 10–16, Table 1,
Supplementary Data 6). Combined the un-annotated and private
PAV genes are very likely to be the product of annotation support
thresholding and not true sequence deletion or pseudogenization.
The remaining 454 pseudogenized and deleted gene models were
2.49x more likely to be high confidence than the private and un-
annotated genes (Fisher’s test P < 1 × 10−16), indicating that
pseudogenized and deleted genes may represent biologically
relevant presence-absence variation.

To confirm the quantitative genetic effects of the observed
PAV, we counted expression of each unique allele across the two
genomes in leaf tissue of an F2 population (Table 1). These results
largely mirror inference based on gene model confidence: private
and un-annotated genes had weak expression, while pseudogen-
ized and deleted gene models showed similar levels of expression
as those within orthologous gene networks. Combined, the
relative rarity of such PAV indicates that small insertion/deletions

(INDELs) and single-nucleotide polymorphisms (SNPs), and not
large sequence deletions, represent the vast majority of molecular
evolution between HAL2 and FIL2. Furthermore, protein coding
DNA sequence (CDS) gain and loss is not common despite the
>1My divergence time between HAL2 and FIL2. Such conserved
gene content and synteny despite significant sequence divergence
(mean π= 0.0195) makes P. hallii an ideal system to test
hypotheses about sequence evolution, selection, and molecular
adaptation.

Genetic mapping to dissect regulatory network evolution. To
map the genetic basis of physiological divergence between vari-
eties, we conducted a large-scale field drought experiment where
25 HAL2 and 34 FIL2 replicates and 243 FIL2xHAL2 F2 geno-
types were subjected to a month-long natural drought. Half of the
plants were watered 24 h prior to harvest (recovery treatment),
while the remainder were harvested under existing drought
conditions. At the physiological scale, midday leaf water potential
(a measure of plant water status) was more responsive to re-
watering among HAL2 than FIL2 plants (χ2df = 1= 4.01, P=
0.045, Supplementary Figure 5). This suggests that the arid-
adapted hallii was more sensitive to temporally variable water
resources, a trait that is likely advantageous in desert ecosystems
marked by drought but punctuated by brief periods of high soil
moisture20.

Physiological responses like leaf water potential are driven in
part by the evolution of gene expression regulatory
sequences21,22. To dissect the genetic basis of regulatory network
divergence between hallii and filipes, we assayed total RNA
abundance of the F2 population (Supplementary Data 7),
constructed a genetic map (Supplementary Figure 6), and
subsequently conducted gene expression quantitative trait locus
(eQTL) mapping. To determine significance of constitutive (QTL)
and treatment-responsive (QTL*E) QTL for the expression
phenotype of each gene, we compared NULL (expression ~E;
no QTL, only drought treatment), additive (expression ~QTL+
E), and full (expression ~QTL+ E+QTL*E) QTL models via
likelihood ratio tests.

While PAV and multi-copy orthogroups are important aspects
of evolution between HAL2 and FIL2, regulatory network
inference of these genes is obscured by different copy numbers

Table 1 Summary of CDS orthology between HAL2 and FIL2

Category (HAL2: FIL2) n. genes % Low support transcripts % Expressed F2 leaf

1:1 Orthologsa 34,396 7.8 74.6
1: 2+ Orthogroupb 548 36.7 42.3
2+: 1 Orthogroup 484 39.0 38.6
2+: 2+ Orthogroup 5589 23.2 51.8
Privatec to HAL2 4455 77.7 20.6
Private to FIL2 4971 73.0 19.7
Presentd: un-annotatede 160 84.3 7.3
Un-annotated: present 136 88.6 4.6
Present: pseudogenef 209 38.0 36.5
Pseudogene: present 212 38.4 43.7
Present: deletedg 19 52.6 35.7
Deleted: present 14 57.1 38.9

Orthology, un-annotated, and presence/absence are inferred via the GENESPACE pipeline (Supplementary Note 3). The gene-annotation category (where HAL2 category precedes ‘:’ and FIL2 follows)
and number of genes found therein are presented in the first two columns. Annotation confidence score (Supplementary Note 2) is calculated via the degree of homology, gene expression, and PFAM
support. Gene models that did not satisfy these criteria were considered low support. To test for expression in leaf tissue in our field experiment, we counted transcript abundance in an HAL2-FIL2 F2
population. Expressed genes had at least one count in ≥10% of the F2 population and mean counts >5, after excluding libraries with 0 counts.
aOrthologs are pairs of HAL2 and FIL2 gene models, where a single gene model from each genome is represented in an orthofinder orthogroup.
bOther orthogroups contain two or more gene models from one or both P. hallii genomes.
cPrivate genes are found in single-gene orthogroups without representation of any outgroup (S. viridis and S. bicolor) sequences.
dPresent genes are found in orthogroups that contain one or more outgroup genes, while eun-annotated genes have sequence with >90% coverage in the alternative genome assembly but no gene
annotation.
fPseudogenes have >10% and ≤90%, and gdeleted sequences have ≤10% similar sequence coverage in the alternate genome assembly.
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of the focal gene. For example, some F2 genotypes will simply lack
a PAV gene model, which would bias inference of the strength
and presence of eQTL. Therefore, we limited our eQTL analysis
to only those high-confidence genes (which have both homology
and transcript evidence) with one-to-one reciprocal best hit
(RBH) orthologs between the two genomes. This test allowed us
to count the total expression of 21,227 putative RBH orthologs
(Supplementary Data 3) by summing allele-specific and shared
transcript counts; 80.4% (17,061) of these had a mean of >1 raw
count across the F2 population. The voom23-normalized
transcript counts from these genes were used as the independent
phenotypic variables in our eQTL analysis. Combined, we found
significant eQTL among 58% of the 17,061 genes with RBH
orthologs between HAL2 and FIL2.

The genetic architecture of regulatory variants can have
profound consequences on the evolutionary processes that
produce heritable genetic diversity7,24. Cis-elements in coding
or promoter regions typically regulate the expression of a single,
physically linked gene. In contrast, trans-elements, like transcrip-
tion factors, can have global regulatory effects, which may
constrain adaptation by increasing the likelihood of interference
and limiting the efficacy of selection8. Due to the potential
antagonistic effects of trans-regulatory elements, we expected
drought-adaptive regulatory networks in P. hallii to be dominated
by cis variants. Indeed, the 9,088 significant cis-eQTL on average
explained 30.2% of total gene expression variation while the 1,314
trans eQTL explained just 7.4% (Table 2).

To develop candidate sequence variants for cis-regulatory QTL,
we conducted coding (Supplementary Data 9) and regulatory
sequence (Supplementary Data 10) alignments of RBH orthologs
between the HAL2 and FIL2 genomes. Cis-regulated genes were
significantly more likely to have accumulated non-synonymous
and other coding variants than genes without QTL (Table 2). This
enrichment of potentially functional variants was much stronger
within promoter regions, where genes with cis-eQTL were 1.5x
more likely to have evolved differences in transcription factor
binding affinity (TFBA) than genes without eQTL (Table 2).
While it is likely that genes with differential expression are
generally subject to weaker evolutionary constraint than those
without evolved expression variation, these results show that cis-
eQTL are generally driven by proximate regulatory loci, and not
by genetically linked, but physically distant, regulatory loci.

Genes with only trans-eQTL are, by definition, not differen-
tially regulated by local sequence variants. Consistent with such
non-local effects, genes regulated by only trans-eQTL had slightly
more conserved CDS (Fisher’s test odds= 1.2x more conserved,
P= 0.08) and similarly conserved TFBA (Fisher’s test odds=
1.08 × , P > 0.1) regions as genes without eQTL. Furthermore,
since trans-regulated loci are targets of transcriptional regulatory
elements, we expected transcription factor binding sites to be very
conserved among genes with only trans-eQTL. Indeed, such genes

had 1.45x greater transcription factor binding site sequence
conservation (Fisher’s test P < 1 × 10−6) than genes with cis-
eQTL, but less significantly conserved CDS regions (Fisher’s test
odds= 1.32 × , P= 0.003, Table 2). These patterns were even
more significant among genes with GxE QTL (Table 2). These
results suggest that non-synonymous variants are less responsible
for the evolution of expression regulation than promoter
sequences and demonstrate sequence conservation of trans-
acting transcription factors binding sites.

Exploring the causes of trans-eQTL hotspots. Differential
adaptation across habitats is an example of a genotype-by-
environment interaction (GxE) for fitness4. Therefore, loci that
contribute to adaptation may be disproportionately envir-
onmentally responsive and exhibit trade-offs25. Despite their
global rarity, trans-eQTL were more than four times as likely as
cis-eQTL to have significant GxE effects (Fisher’s test odds=
4.40, P < 1 × 10−16, Table 2), indicating a potentially adaptive role
of trans-regulatory evolution between P. hallii varieties. Fur-
thermore, there were three genomic hotspots where trans-eQTL
were more common than cis-eQTL, which represented 3.1% of
the physical genome sequence but 40.4% of all trans-eQTL
(Fig. 3a–b, Table 3). Combined, these hotspots were responsible
for 3.84 × (Fisher’s test P < 1 × 10−16) more GxE effects than all
trans-eQTL outside this interval.

It is important to note that the eQTL hotspots we identified
may not be caused by regulatory element evolution, but instead
could be driven by the presence of a large physiological QTL that
altered plant water status and caused downstream gene expres-
sion variation of many water status-responsive genes. To test this
hypothesis, we collected leaf water potential (LWP), which is the
best available field-scale proxy for plant water status26, from the
entire F2 population at both pre-dawn and midday at the same
time as RNA sampling. There were no significant QTL (lowest
empirically-derived P-value= 0.27, Supplementary Table 6) on
any chromosome for either sampling period, indicating that
genetic variation in plant water status does not in turn drive the
physical clustering of trans-eQTL. Instead, the trans-eQTL
hotspots and their significantly elevated environmental sensitivity
suggest that pleiotropic mutations in transcription factors may be
a major source of regulatory variation.

We searched for candidate genes by investigating the distribu-
tion of allelic effects among QTL mapping to each hotspot27.
For example, expression of all but two genes regulated by trans-
eQTL in the *3a primary hotspot were driven by plasticity of
the FIL2, but not the HAL2 allele (Fig. 3c). Within this 964 kb
interval, three genes had significant cis-eQTL (Supplementary
Data 8) and elevated non-synonymous substitution rates
(Supplementary Data 9). The most promising candidate, ABO3
(P. hallii ortholog of A. thaliana AT1G66600 - ABA Overly

Table 2 Summary of cis- and trans-eQTL effects

eQTL category n. QTL Mean
LOD

Mean PVE
(%)

CDS odds vs.
no QTL

TFBA odds vs.
no QTL

CDS odds
vs. cis

TFBA odds
vs. cis

CDS odds
vs. trans

TFBA odds
vs. trans

Cis (additive) 7040 29.7 29.2 1.12* 1.51*** --- --- 1.32* 1.64***

Trans (add.) 576 7.3 7.4 0.85+ 0.93 0.76* 0.61*** --- ---
Cis (GxE) 2048 37.3 33.7 1.20* 1.79*** 1.06 1.19* 1.41* 1.94***

Trans (GxE) 738 6.6 7.3 0.95 0.75* 0.85 0.49*** 1.12 0.81

Total number, mean LOD, and mean percent of phenotypic variance explained (PVE) are presented for each unique combination of additive/GxE and cis/trans eQTL. Each gene was also qualified as
having significantly diverged coding DNA sequence (CDS) or promoter sequence evolution within transcription factor binding sites (TFBA). The Fisher’s test odds of enrichment of evolution at either of
these sites are presented against three backgrounds: genes without QTL (no QTL), genes with only cis-eQTL or only trans-eQTL. Therefore, odds >1 indicates cases where the test group has evolved
more sequence variants between HAL2 and FIL2 than the background. Genes with both cis- and trans-eQTL are excluded for the enrichment tests. Significance codes: ***P-value<0.00001, *P-value<0.01,
+P-value<0.1.
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Sensitive 3, PhHAL.3G069100/Pahal.3G071300), is a well-
documented drought-responsive WRKY transcription factor.
Knockout alleles of ABO3 in A. thaliana induce extreme
sensitivity to drought28. RT-qPCR revealed that the FIL2 ABO3
allele is 27.7x downregulated relative to the HAL2 allele across
both well-watered and drought conditions (Supplementary
Table 7). The elevated drought-response caused by the weak
FIL2 allele is consistent with the extreme environmental

sensitivity of non-functional ABO3 alleles in A. thaliana. It is
important to note that eQTL analysis cannot definitively identify
the causal loci driving trans-eQTL hotspots but instead provides
candidates for future validation. However, the observed trans-
eQTL colocalization clearly demonstrates the central role of
global regulatory elements in evolved molecular drought
responses.

Signatures of selection among cis–trans regulatory networks.
Elevated GxE among trans-eQTL, particularly within the hot-
spots, indicates possible selection on gene expression plasticity.
To test the hypothesis of non-neutral regulatory network evolu-
tion, we examined the QTL effect distribution among the 684
genes with both cis- and trans-eQTL (Table 3). Under a neutral
model, cis- and trans-regulatory elements should evolve inde-
pendently, which produces a random distribution of trans- rela-
tive to cis-effect directionality (up/down regulated)29. However,
directional and stabilizing selection produce correlated shifts
among regulatory loci29,30. For example, if directional selection
favors up-regulation of a gene, adaptive evolution of both cis- and
trans-regulatory loci would increase expression; such positive
correlations among loci are known as reinforcing QTL effects.
Alternatively, if stabilizing selection favors maintenance of
ancestral expression levels, non-adaptive evolution of increased
expression may be compensated for by selection for regulatory
repression at another locus. Such compensatory evolution pro-
motes antagonistic (negatively correlated) cis–trans regulatory
networks.

We observed a significant genome-wide bias towards antag-
onistic effects (Fig. 3d, Fisher’s test odds= 1.3, P= 0.015) and a
very strong signal in the drought treatment, where allelic effects
were greater than two times more likely to be antagonistic than
under neutral expectations (Fig. 3d, Fisher’s test odds= 2.15, P <
1 × 10−12). However, the relative strength of reinforcing and
antagonistic effects was highly dependent on the position of the
trans-eQTL (Table 3). For example, the *3a hotspot was enriched
in reinforcing effects relative to all other trans-eQTL; however,
the proportion of reinforcing effects at *3a was not significantly
different than the neutral expectation of 1:1 (Table 3). In contrast,
the *3b hotspot was disproportionately represented by genes with
antagonistic cis-trans effects in both treatments relative to the
background and neutral expectation (Table 3). These results
indicate a genome-wide prevalence of antagonistic effects, which
is typical of stabilizing selection on expression regulation.

Validating the physiological effects of a trans-eQTL hotspot.
Given the large number of genes regulated and the elevated rate
of GxE, the trans-eQTL hotspots clearly drive variation in
molecular responses within our drought-recovery experiment. In
switchgrass, regulatory responses depended on the intensity and
duration of drought31, and our drought experiment is only a
subsample of possible drought conditions. Therefore, we sought
to validate the effects of the trans-eQTL hotspots in a broader
context by exploring drought responses in a recombinant inbred
line (RIL) population, derived from the F2 used in the eQTL study
(Supplementary Table 8). We assayed leaf relative water content
(RWC) and chlorophyll content (SPAD) and conducted allelic
contrasts at the proximate markers to each trans-eQTL hotspot
peak position. Since RILs represent a random sample of genetic
backgrounds, this analysis permits inference of causality when
testing the effects of allelic differences at a locus.

Allelic variation at the *3b hotspot never significantly affected
any treatment-trait combination, and the *7 hotspot had only one
significant association (RWC under drought, Supplementary
Table 8). However, variation at the *3a hotspot marginally
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Fig. 3 Distribution and effect of trans-eQTL. The position of each cis (on
diagonal) and trans-eQTL (off diagonal) and the location of the proximate
marker to the physical gene position are plotted (a). Points and line
segments are colored green/black to distinguish adjacent chromosomes.
The density of trans-eQTL/cM along sliding windows were scored across
the genome (b). The three strongest peaks (hotspots) are labeled (*). The
allelic effects of the *3a trans-eQTL are plotted as heatmaps, where red
colors indicate higher gene-scaled expression (c). The color scale of the
heatmap corresponds to the scaled allelic effects of the *3a hotspot, where
increasing blue and red color intensity indicate stronger negative and
positive allelic effects respectively. White cells have a scaled allelic effect of
zero. We tested for biases of compensatory or reinforcing evolution
between cis and trans eQTL. Overall, there was significant biases towards
antagonistic effects, however this bias was much stronger in the drought
than recovery treatment (d). Source data for panels a and d are found in
Supplementary Table 8. Source data for panels b, c are provided as a Source
Data file
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affected RWC plasticity (t=−1.95, P= 0.052), RWC in the
drought treatment (t= 1.55, P= 0.081), and significantly affected
SPAD in both recovery (t= 2.42, P= 0.016) and drought
treatments (t= 2.02, P= 0.044). Individually, each of these
effects are not highly significant. Yet, when taken together we
observe strong support for functional effects of allelic variation at
the *3a hotspot with a Fisher’s combined test (χ2df=12= 27.3, P=
0.0068, Supplementary Table 8). Combined, the allelic effects at
the *3a hotspot are consistent with those of ABO3 (lower
plasticity, higher constitutive RWC and SPAD in HAL2) and
demonstrate the predictive potential and multi-environment
effect of trans-acting transcriptional regulatory elements.

Discussion
The intersection of physiology, quantitative genetics, and whole
genome sequencing holds great promise for understanding the
complex interaction between genetic variation and the environ-
ment31. Using de novo whole genome assembly, large-scale field
experimentation, and physiological genomic techniques in P.
hallii, we were able to precisely map global regulatory loci and
infer candidate variants. These experimental resources allow us to
better infer the genetic basis of complex traits in plant adaptation,
predict responses to current and future climatic stress, and
develop a strategy for drought-responsive biotechnology in bio-
fuel breeding programs.

Methods
Genome sequencing assembly and annotation. We sequenced the Panicum
hallii var. hallii and var. filipes genotypes HAL2 and FIL2 using a whole genome
shotgun strategy and standard sequencing protocols. Sequencing was conducted on
both Illumina (HISeq) and Pacific Biosciences (SEQUEL) platforms at the
Department of Energy Joint Genome Institute (JGI, Walnut Creek, CA, USA) and
the HudsonAlpha Institute for Biotechnology (Huntsville AL, USA).

Sequencing effort for HAL2 (Supplementary Note 1) included one 800 bp insert
2 × 250 fragment library (150 × ) and a total of 89.5x of PACBIO reads (average
subread length 11.8 kb). FIL2 sequencing was similar (Supplementary Note 1), with
one 500 bp insert 2 × 150 fragment library (100 × ) and a total of 95.87x of
Pacific Biosciences reads (average subread length 9.6 kb). Both the FIL2 and HAL2
assemblies were performed using MECAT32 and polished using QUIVER33.

We built a 325,613-marker map from shallow resequencing of the RIL
population34. This marker order was used to identify mis-joins in the assembly. A
total of 115 mis-joins were identified in the FIL2 assembly and only 1 mis-join in
HAL2. Scaffolds were then oriented, ordered, and joined together. A total of 1246
(FIL2) and 119 (HAL2) joins were applied to the broken assemblies to form the
final releases consisting of 9 chromosomes each. Short redundant sequence from
contig ends were aligned to one another and collapsed when appropriate. A total of
18 (HAL2) and 450 (FIL2) repeated adjacent contig pairs were identified and
collapsed. For the FIL2 release, a set of 30,315 (430.3 Mb) targeted clone sequences
(Illumina), along with a set of 704,618 (3.74 Gb, 6.9x coverage) MOLECULO reads
were used to patch 60 sequence gaps. Finally, Illumina reads were employed to
correct any remaining MECAT consensus calling errors (e.g. homozygous SNPs
and INDELs).

PERTRAN (Supplementary Note 2) and PASA35 were used to produce 92,211
(HAL2) and 111,325 (FIL2) transcript assemblies from ~1100M (HAL2) and
~1200M (FIL2) 2 × 150 paired-end Illumina RNA-seq reads. Repetitive DNA

elements were identified de novo with repeatModeler36. For mapping and genome
comparisons, we soft-masked the genomes using repeatMasker37, with ancestral
repeats from RepBase and the repeat annotations from repeatModeler output. Loci
were determined by transcript assembly alignments and/or EXONERATE (https://
github.com/nathanweeks/exonerate) alignments of proteins from Arabidopsis
thaliana, soybean, Kitaake rice, sorghum, foxtail millet, Brachypodium distachyon,
grape and Swiss-Prot proteomes. Gene models were predicted by homology-based
methods, FGENESH+ /_EST38 GenomeScan39, and AUGUSTUS via BRAKER140.
The best-scoring predictions for each locus were selected using EST and protein
support and penalized if overlapped with repeats. PASA was employed to add
UTRs, splicing corrections, and alternative transcripts. High-confidence transcripts
were called for loci with BLASTP Cscores >0.5, EST coverage, and <20% of CDS
overlapping with repeats (if >20% overlap with repeats, only loci with Cscores >0.9
and homology coverage >0.70 were retained). Gene models with >30% TE domains
(Pfam) were also culled. Finally, gene models with a short single exon (<300 BP
CDS), without protein domain or with weak expression evidence were removed.

Comparative genomics. We used comparative genomic approaches to accomplish
the following goals: (1) identify orthologous pairs of genes, (2) define the scale and
causes of presence absence variation among gene annotations, and (3) understand
the scale of synteny between the HAL2 and FIL2 genomes. Given these goals and
the highly-repetitive and less conserved intergenic regions in plant genomes, we
used a gene-level approach to whole-genome alignments. We ignored regions that
were not in proximity to annotated gene models.

The GENESPACE pipeline (Supplementary Note 3) is applied to a set of de
novo genomic assemblies and annotations. In short, GENESPACE conducts
standard inference of orthology using the orthofinder41 program but limits the
search within known colinear (syntenic) blocks, generated by the multiple-
collinearity inference program MCScanX42. This allows for the inference of
orthology in duplicated chromosomal regions, as these appear as multiple distinct
blocks in the alignments. In addition to pairwise peptide–peptide searches for
orthologous gene groups, GENESPACE also conducts alignments against un-
annotated genomic sequences (via BLAT43 and EXONERATE) to discover the
sequence identity of pseudogenized or otherwise un-annotated loci. The pipeline
outputs alignments and some general sequence-divergence statistics for all
orthogroup sequences among all genomes considered.

F2 RNA sequencing and analysis. HAL2, FIL2, and the F2 mapping population
were exposed to a short term recovery drought experiment following Lovell et al.44.
In short, all plants experienced a natural 30-day drought at the Ladybird Johnson
Wildflower Center (Austin, TX; 30.19° N, 97.87° W). Drought treatment plants
were harvested on 5 July 2013, while recovery treatment plants received 4 L of
water on 7 July 2013 and were harvested on 8 July 2013. For each plant, we
measured midday leaf water potential (LWP, Ψleaf) with a Scholander-type pressure
bomb (PMS Instruments, model 1000) between 11:00 and 13:00. All plants reached
anthesis by 5 July 2013.

Leaf tissue harvest was conducted on 5 and 8 July 2013 between 11:00 and
13:00, where the most recent fully emerged leaf was immediately flash frozen with
liquid nitrogen. For total gene expression assays, RNA (3 µg, RIN ≥ 5) was
extracted from 50–200 mg of homogenized (Geno/Grinder, Spex SamplePrep) and
DNase 1-treated leaf tissue with RNeasy Plant Mini kits (Qiagen). Total RNA
libraries were prepared on a PerkinElmer SciClone NGS robotic liquid handling
system using Illumina’s TruSeq Stranded mRNA HT Sample Prep kit with 1 µg
RNA per sample, and 10 cycles of library amplification PCR. Library quantification
by KAPA Biosystem’s next-generation sequencing library qPCR was accomplished
on a Roche LightCycler 480 real-time PCR instrument. Sequencing was performed
on the Illumina HiSeq 2000 sequencer and a TruSeq SBS sequencing kit (200
cycles, v3, following a 2 × 150 indexed run recipe).

To quantify expression, we mapped reads to concatenated genome assemblies
and annotations of the HAL2 and FIL2 genomes. Uniquely mapping reads were

Table 3 Summary of direction of effects for genes with both cis- and trans-eQTL

Treatment: drought Treatment: recovery

Hotspot ID n. Coordinates
(Mb)

n. reinforce n. antag. Odds v.
background

Odds v.
neutral

n. reinforce. n. antag. Odds v.
background

Odds v.
neutral

3a 206 0.1–7.3 43 42 2.27** 1.02 43 42 1.44 1.02
3b 183 12.3–14.8 18 50 0.8 0.36* 20 48 0.59+ 0.42*

7 127 34.3–39.7 32 26 2.73** 1.23 29 29 1.4 1
Overall 1314 NA 217 467 – 0.46** 296 388 – 0.76*

The total number of QTL with reinforcing (n. reinforce) and antagonistic (n. antag.) effects are presented for each treatment and split by the position (if the trans-eQTL is in one of the three hotspots).
Fisher’s exact tests for imbalance between antagonistic and reinforcing effects were conducted within each treatment with two NULL hypotheses: (1) the total bias towards reinforcing effects among all
genes with cis- and trans-eQTL (v. background) and (2) a 1:1 ratio, expected under purely neutral evolution (v. neutral). Odds presented indicate the ratio of the observed bias toward reinforcement
relative to the NULL ratio at each trans-eQTL location. Significance codes: **P-value<0.001, *P-value<0.05, +P-value<0.1.
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counted with STAR45 – by definition these reads represent allele-specific
expression (ASE). Shared (not allele-specific) reads were those that mapped to both
orthologs; these were counted with the subread46 featureCount function. Total
counts, calculated as the sum of ASE and shared counts, were used for eQTL
analyses. High-confidence gene models with reciprocal best hit one-to-one
orthologs and average total counts ≥1 were retained for further analysis. Total
counts were voom23 normalized for eQTL analysis.

eQTL analysis. Expression quantitative locus mapping was performed in R/qtl47. It
is common to perform eQTL via one-way single QTL scans for each gene
expression trait. However, there are several multi-locus correlated regions in our
genetic map, where markers on one chromosome are in linkage disequilibrium
(LD) with markers on another chromosome (Supplementary Figure 7). Therefore,
genes with cis-eQTL that are physically within these LD regions may have spurious
trans-eQTL on other chromosomes. Since previous results suggested that cis-eQTL
were pervasive and of large effect in HAL2-FIL2 crosses44, we scanned for QTL
peaks, conditioning on the additive covariates of treatment and the cis-eQTL
genotype.

Both additive and QTL-by-treatment (GxE eQTL) scans were accomplished
using the Haley-Knott algorithm on Hidden Markov Model multipoint genotype
probabilities. The lowest genome-wide error rate-controlled empirical P-value
(1000 permutations) for each transcript abundance phenotype was multiple-test
corrected using the Q-value approach48. The maximum significant (α= 0.05)
empirical P-value was enforced as the trans-significance threshold. Only trans-
eQTL LOD peaks that were more significant than this threshold were retained.
Since cis-eQTL were not subject to genomic scans, we employed a standard Q-
value transformed ANOVA χ2P-value threshold, retaining cis effects with FDR-
corrected P-values ≤0.05. Both cis- and trans-GxE effects were determined by
comparing the additive and full models via likelihood ratio tests. The resultant P-
values were FDR corrected in an identical manner as the additive cis-eQTL test.
Finally, we dropped any cis- or trans-eQTL with maximum LOD scores <2.

Genetic map construction. To construct a linkage map, we calculated the ratio of
HAL2/(HAL2+ FIL2) allele-specific expression (ASE) for 15,082 gene models with
>5 ASE counts in each parent. For each chromosome and F2 genotype, we con-
ducted a 20-gene overlapping sliding window calculation of the proportion of
HAL2-ASE. We expected clear tri-modality of HAL2 allele frequency within each
window, where the HAL2 homozygotes were ~100% HAL2 alleles, the hetero-
zygotes were ~50%, and the FIL2 homozygotes were ~0%. Given the F2 population,
the three peaks should be in approximately a 1:2:1 segregation ratio. Windows that
did not conform to these expectations were dropped from the analysis.

To make calls, we first needed to develop thresholds that distinguished the three
genotypes. Since the relative bias of allele frequency towards either parent in the
heterozygote varied based on the markers in the window, a static threshold was not
appropriate. Instead, we applied a dynamic threshold that separated the trimodal
distribution of alleles into three bins. This dynamic thresholding eliminated
library-specific biases towards either parent. The most common call (majority vote)
in each 20-gene window was used as the genotype call. Calls were concatenated
across libraries and chromosomes to produce a single genotype matrix.

Sliding window majority vote markers were processed to produce a saturated
and non-redundant genetic map. Markers were first clustered into groups with
identical genotypes. The marker with the least missing data was retained for each
cluster of identical markers, resulting in a matrix of 3555 unique markers. We then
clustered pairs of markers with ≤0.005 recombination fractions, retaining the
marker that minimized missing data and segregation distortion. The physical
assembly position was used to order markers and form linkage groups. After
estimating a genetic map with the Kosambi mapping function47, we culled markers
within 0.5 cM, retaining the marker with lower segregation distortion. Finally, we
tested for potentially problematic markers by assessing the genetic map size before
and after dropping each marker. Those markers that resulted in an expansion of
the map >1 cM were culled. The final map contained 1519 markers.

Given the approach of genotyping via allele-specific expression counts, we
sought to test the genotyping error. To accomplish this, we assumed the marker
order was correct, and iteratively checked parameters of map expansion across a
range of assumed genotyping errors49. For all chromosomes, the −log likelihood of
the genetic map was maximized at 1 × 10−6 (Supplementary Figure 8), indicating
that we would expect ≤1 genotyping error among all 200,430 marker-by-individual
combinations in our genetic map.

Tests for selection on eQTL. To test for selection on the evolution of gene
expression, we employed a sign test where the odds ratio of cis- and trans- up- and
down-regulatory evolution was tested via a Fisher’s exact test. Directional effects of
each QTL were calculated using the fitqtl function in R/qtl. Estimates of QTL
effects were calculated as the t-statistic of replacing the HAL2 allele with the FIL2
allele at a given locus. Deviations from the expected odds ratio (1:1) imply non-
neutral evolution29,50. We also tested the odds ratio against the overall prevalence
of antagonistic and reinforcing effects across the genome. This comparison allowed
for inference of outlier regions relative to the genome average of cis-trans allelic
effects.

Promoter and coding DNA sequence variant annotation. Reciprocal best hit
(RBH) orthologs are defined as those pairs of genes where each is the other best
matching sequence when compared to the alternate genome. Here we tested for 1:1
RBH orthologs by finding the best HAL2(query):FIL2(target) and FIL2(query):
HAL2(target) protein BLAT43 scores. The genes where both BLAT runs produced
the same set of maximal gene pairings were the initial set of RBH orthologs. Given
the known high degree of synteny, we then culled this set to include only pairings
where both genes were on the same chromosomal region, allowing for 20% of the
total chromosome length as buffer.

To annotate coding DNA sequences (CDS), FIL2 CDS sequences were aligned
against corresponding HAL2 sequences using Minimap251. The resulting
alignment file was subset to 26786 HAL2-FIL2 orthologs. A pileup-formatted file
was generated using SAMtools52 mpileup utility. VarScan253 was used to call
variants (SNPs and INDELs). Those variants were then annotated using SnpEFF54.
SNP and INDEL variant annotations were described as synonymous, moderate
effect (e.g. missense mutation), high effect (e.g. premature stop), or insertion/
deletion. All genes were classified as either having or lacking significant CDS
evolution. Significant genes had at least one moderate or larger effect SNP or
INDEL, while non-significant genes were monomorphic, or had only low effect
variants.

We annotated transcription factor binding affinity (TFBA) of the promoter
sequences (defined as 2 kb upstream of the transcriptional start site) by extracting
and comparing relative binding affinity of a set of 35 transcription factor families.
Transcription factor binding sites (motifs) were downloaded from the JASPAR2016
plant database55 as positional frequency matrices. Affinity of each motif was scored
for each promoter sequence and differential binding affinity was tested using the R
package PWMEnrich56. Binomial tests for equal affinity were performed for each
gene and transcription factor. Significance was determined by controlling for global
false discovery rate at α= 0.05 by transforming the binomial P-values using the
Benjami-Hochberg method. All genes were classified as either having or lacking
significant TFBA evolution. Significant genes had at least one transcription factor
with a significant binomial test while all transcription factors in non-significant
TFBA genes had FDR-corrected binomial P-values ≥0.05.

In many cases, we sought to compare the relative prevalence of genes with and
without TFBA and CDS evolution. To accomplish this, we employed a Fisher’s
exact test, reporting the odds ratio and exact P-value.

Population genetic analyses. We re-sequenced 94 P. hallii genotypes; 78 var.
hallii, and 15 var. filipes. We selected more hallii samples than filipes as the geo-
graphic range of hallii is far larger than that of filipes. If identical sample sizes were
used, we would be comparing geographically proximate filipes and geographically
distant hallii. Since there is at least some isolation-by-distance in P. hallii16, we
instead opted to choose sample sizes that generally reflect the relative range size of
each variety.

Illumina HiSeq2500 2 × 150 reads were mapped to the HAL2 genome reference
via bwa-mem57, followed by samtools52 to sort the bam and create a multisample
mileup52. Single nucleotide polymorphisms (SNP) and insertion-deletion (indel)
polymorphisms were called via the Varscan 2.4.053 pipeline as above, with a
minimum coverage of 8, and minimum reads of 4. A binomial test was used to
confirm the allelic state (homozygous or heterozygous) at a P-value of 0.05. SNPs
within 25 bp of a repeat were removed. A minimum presence of allele in 90%
samples was required for further analysis.

Population structure was estimated using fastStructure58 and TESS59 with a
subset of 50k markers, that were LD pruned (parameters: --indep-pairwise 50 50
0.5) in plink60. A single sample with a membership coefficient (qi) of <0.7 was
considered admixed.

To infer demographic history, samples were phased (via SHAPEIT17). Sites
were filtered for unique 24mers to minimize spurious variant calls. These data were
input into MSMC217 to estimate effective population size and divergence using the
following parameters: 4 haplotypes for each subpopulation, skipping ambiguous
sites and a time segment pattern= ‘10*2+ 20*5+ 10*2’ and an estimated
rhoOverMu of 0.25. We estimated rhoOverMu as 0.25 as the mean value from 100
iterations without the fixed recombination parameter of five sets of four haplotypes
in each subpopulation and averaged them. To estimate scaled times were converted
to years assuming a generation time of 1 year and a mutation rate of 6.5*10–8. 50
bootstrap datasets obtained using MSMC tools, and simulations using the same
parameters above were performed for each of the estimate to get the confidence
intervals for population size estimates.

For the phylogenetic analysis, we first defined syntenic blocks to obtain an
outgroup for the analysis. To define syntenic blocks, CDS DNA sequences were
pulled and reciprocally mapped via blat43 between the P. hallii genomes, Setaria
viridis, Sorghum bicolor, and Switchgrass. Mappings with scores >100 and within
50% of the maximum mapping score for each gene were retained. Two-
dimensional k-nearest neighbor clustering was employed to cull mappings to
regions of dense hits in both genomes. For each chromosome pair, we chained
mappings together using a traveling salesperson problem solver, which can be used
to infer marker order in genetic mapping61. These chains were split if gaps >500 kb
existed, and re-chained if two blocks were adjacent. We parsed 30 large syntenic
blocks, which contained 326k variable sites across all non-admixed libraries. A
random set of 50 K SNP were used for ML tree construction in RAXML62.
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Dating divergence time. OrthoFinder41 was used with default parameters to
identify clusters of single copy genes in 7 species along with Arabidopsis as out-
group. Of the 3311 ortholog sets, we randomly chose 100 sets and aligned them in
Clustal-omega63. We used a HKY substitution model with 4 gamma rate categories
and an uncorrelated log-normal relaxed clock model in BEAST2 (v2.4.7)64 to
estimate the divergence times. A calibration time of 52 Mya was used for Bra-
chypodium and Sorghum split. We performed four independent runs, each with 10
million burn-ins and 50 million chain length, saving every 5000 chains. Log-
Combiner64 was used to combine trees that have an effective sample size of at least
200. The consensus trees were further estimated in TreeAnnotator64 using mean
and median node heights.

qPCR validation of RNA sequencing. For quantitative RT-PCR, we isolated total
RNA from the leaves using an RNA extraction kit (TRIzol reagent, Invitrogen).
About 1 μg total RNA was reverse-transcribed using SSII reverse transcriptase
(Invitrogen) in a volume of 80 μl to obtain cDNA. We used primers PhABO3q-F
(5′-CCGCATACTGGATCTCACAA-3′) and PhABO3q-R (5′-TCTGAATC-
CAGTGGCACATC-3′) for amplifying the transcript of PhABO3 and PhUBIq-F
(5′-TCATTTCGATGCTCTCTAGTCC-3′) and PhUBIq-R (5′-TTCCTGA-
GATTTGCGAACAATG-3′) for ubiquitin-conjugating enzyme (Pahal.3G250900)
as the internal control. We carried out quantitative RT-PCR in a total volume of 10
μl containing 2 μl of the reverse-transcribed product above, 0.25 μM gene-specific
primers and 5 μl LightCycler 480 SYBR Green I Master (Roche) on a Roche
LightCycler 480 II real-time PCR System according to the manufacturer’s
instructions. The measurements were obtained using the relative quantification
method65.

Recombinant inbred line field experiment. 294 F7 individuals of the HAL2xFIL2
recombinant inbred line (RIL) population34 were grown at Brackenridge Field
Laboratory (BFL, Austin, TX, USA) in spring and summer of 2016. Seeds were
germinated in the BFL greenhouse on 29-Feburary and 3-March 2016. For each
RIL line, seed coats for 40 seed were removed by scarification, and seeds were
germinated in wet aquarium sand on petri plates. Sand was rewetted as necessary
with Miracle Gro liquid fertilizer mix. Plate locations were randomly cycled daily in
the greenhouse to standardize growth conditions. Germination occurred between
3–5 March and on 7–10 March. The healthiest seedlings were transplanted from
sand to 32-cell trays to generate at least eight healthy replicates per line. Trans-
plants were thinned to the most robust individual per cell between 23–29 March,
and 294 lines with eight healthy individuals were selected for inclusion in the field
design. On 7 April, plants were randomized within trays into the field experiment
layout. To standardize growing conditions, trays were also cycled once in the
greenhouse between transplanting and randomization.

RIL individuals were transplanted in the field on 14–15 April in 32 interspersed
wet and dry treatment beds, three individuals wide and 26 individuals long. These
blocks were surrounded by a border row of FIL2 individuals. Individuals were
spaced by 0.5 m along the length of the bed, and by 1.25 m along the width of the
bed and between beds. Four individuals from each RIL line were randomized into
both the wet treatment and the dry treatment beds to make a randomized split-plot
design. Transplanting survival was very high, but nine plants were replaced in mid-
May due to transplanting death. The entire field was irrigated on 14, 15, and 20
April to reduce transplantation shock. Thereafter, the wet treatment beds were
frequently irrigated between 17-June and 8-August in order to achieve >50% soil
volumetric water content. The dry treatment beds were irrigated at roughly 1/5th
the frequency, at a level sufficient to achieve 30% soil volumetric water content, as
measured with a Campbell Scientific CWS655 soil moisture probe. We measured
two phenotypes: leaf relative water content (RWC= (weightfresh−wtdry)/
(wtturgid−wtdry)) and leaf chlorophyll content (SPAD, using a SPAD 502
chlorophyll meter). Phenotypic tissue harvest and measurements took place from
11–15 July 2016 between 9AM and 1PM.

The best linear unbiased predictors were calculated for each genotype-by-
treatment combination, where bed was treated as a random effect in the split plot
design. The maximal position of each trans-eQTL hotspot was extracted and
converted from the HAL2 coordinate system of the F2 genetic map to the FIL2
(v2.0) coordinate system of the RIL genetic map34. The multipoint genotype
probability for the proximate RIL marker to each hotspot was inferred via a hidden
Markov model, as implemented in R/qtl’s calc.genoprob function. Finally, we
applied single marker tests for marker-phenotype associations between RWC and
SPAD in the three conditions (wet, dry, plasticity [wet-dry]) as implemented in R/
qtl’s fitqtl function.

Data availability
All RNA and resequencing reads have been deposited in the NCBI Short Read
Archive (https://www.ncbi.nlm.nih.gov/sra). Bioprojects, sample IDs, and metadata
can be found in Supplementary Data 1 and 7. Both genome assemblies and
annotations are available through phytozome (https://phytozome.jgi.doe.gov). The
assemblies have also been deposited on Genbank (https://www.ncbi.nlm.nih.gov/
genbank) under BioProjects PRJNA251785 (HAL2) and PRJNA250527 (FIL2). All
statistical, QTL mapping, and visualization functions were implemented in R 3.4.3
and have been compiled into an R package stored on github [https://github.com/

jtlovell/qtlTools]. Additional supporting data is provided as Supplementary Data.
Details are provided in the Description of Additional Supplementary Files and the
Reporting Summary. The source data underlying Figs. 1A-B, 2A-D, 3B-C and
Supplementary Figure 3–7 are provided as a Source Data File. Source data for
Fig. 3A, D and Supplementary Figure 1–2 are found in Supplementary Data 7 and
Supplementary Data 2, respectively. A reporting summary for this Article is
available as a Supplementary Information file.
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