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As the world’s population expands from 7.6 billion to 10 billion over the next 30 years,
scientists and farmers across the globemust explore every angle necessary to provide a safe,
stable and sustainable food supply for generations to come. Rice, and its wild relatives in the
genusOryza, will play a significant role in helping to solve this 10 billion people question due to
its place as a staple food for billions. The genusOryza is composed of 27 species that span 15
million years of evolutionary diversification and have been shown to contain a plethora of
untapped adaptive traits, e.g., biotic and abiotic resistances, which can be used to improve
cultivated rice. Such traits can be introduced into cultivated rice, in some cases by
conventional crossing, and others via genetic transformation and gene editing methods. In
cases where traits are too complex to easily transfer to cultivated rice [e.g., quantitative trait
loci (QTL)], an alternative strategy is to domesticate the wild relative that already contains the
desired adaptive traits – i.e., “neodomestication”. To utilize the Oryza genus for crop
improvement and neodomestication, we first need a set of genomic resources that can be
used to efficiently identify, capture, and guide molecular crop improvement. Here, we
introduce the concept of platinum standard reference genome sequences (PSRefSeq) – a
new standard by which contiguous near-gap free reference genomes can now be produced.
By having a set of PSRefSeqs for every Oryza species we set a new bar for how crop wild
relatives can be integrated into crop improvement programs.

Keywords: neodomestication, rice wild relatives, platinum reference genomes, Oryza coarctata, Oryza
INTRODUCTION

As the world population grows and climate change dictates new conditions for agriculture worldwide,
finding new solutions to ensure a sustainable food supply is crucial. Rice is the staple food in the regions of
the world with the largest projected population growth. Moreover, these regions and their available arable
land are expected to bemost negatively affected by climate change in the future (Milovanovic and Smutka,
2017). Cultivated rice, as for most modern crops, has undergone domestication and genetic bottlenecks
over millennia, giving this crop limited genetic potential to adapt to rapid environmental changes. In
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contrast, the wild relatives (WRs) of rice have been shown to possess
the genetic potential to enhance yield, nutrient content, and
resistance to several environmental stressors (Brar and Khush, 2018).

For decades, rice breeders have utilized genetic traits from the
WRs of the genus Oryza, first via conventional crossing and now
more recently using plant transformation and gene editing tools,
to produce new, more resilient varieties of cultivated rice (Brar
and Khush, 2018). Although these WRs contain novel alleles and
variations with the potential to improve cultivated rice, issues
such as hybrid-viability, -sterility, and -weakness hinder their
introgression into cultivated rice, especially from the more
distant relatives (Nadir et al., 2018). However, a toolbox of
high-quality WR genome assemblies and gene-editing tools
could help address these issues by providing technology for the
precise transfer of newly discovered and advantageous wild
alleles and genes into cultivated backgrounds.

Gene editing would also enable researchers to leverage these WRs
with adaptive traits through neodomestication, i.e., the domestication
of plants that have not previously been used for agriculture (Zsögön
et al., 2018). Asmost traits in domesticated ideotypes arose from loss-
of-function mutations, inducing such mutations in the orthologs of
domestication-related genes in the WRs could result in a
neodomesticated plant that maintains its desired adaptive trait(s)
(e.g., abiotic and biotic resistance) (Doebley et al., 2006; Fernie and
Yan, 2019). Though very far from a trivial task, neodomestication of
the WRs of rice could potentially solve the challenge of feeding the
planet’s rapidly growing population in the face of climate change.
Neodomestication untangles the relationships between plant
architecture, physiological mechanisms, and cellular processes that
produce the complex and polygenic traits necessary to provide
resistance or tolerance to environmental stressors.

Thus, in this review, we will discuss the following topics:

1. The untapped pool of genetic diversity buried within the
genomes of the wild relatives of rice

2. The use of high-quality near gap-free reference genome
sequences to aid in crop improvement

3. Barriers to genetic introgression and alternative strategies to
introgression via neodomestication
GENETIC DIVERSITY OF THE WILD
RELATIVES OF RICE

TheOryza genus contains 11 different genome types across 27 species,
both diploid and polyploid, with a 3.6-fold difference in genome sizes
(from around 300 Mb in the diploid FF genome ofO. brachyantha to
1,283 Mb in the HHJJ polyploid genome of O. ridleyi, with the AA
genome of cultivated rice falling in the 400Mb range). There are four
species complexes within the Oryza genus: (1) O. sativa, (2) O.
officinalis, (3) O. ridleyi, and (4) O. meyeriana (Vaughan, 1989).
The WRs O. rufipogon and O. barthii have been identified as the
progenitors of the domesticated rice species, O. sativa and O.
glaberrima, respectively (Fuller et al., 2010; Wang et al., 2014; Chen
et al., 2019). According to the classifications of gene pools initially
Frontiers in Plant Science | www.frontiersin.org 2
defined by Harlan and deWet, 1971, species in theO. sativa complex
fall within the primary gene pool (Nadir et al., 2018). Despite
reproductive barriers such as low cross-fertility, low F1 seed
germinability and F2 hybrid weakness, common introgression
within the O.sativa complex was observed and gene transfer
requires traditional breeding methods (Jones et al., 1997; Jena, 2010;
Zheng and Ge, 2010; Pusadee et al., 2016; Wang et al., 2017; Nadir
et al., 2018). The secondary gene pool is represented by the officinalis
complex and O. brachyantha, which is defined with regards to the
primary gene pool as cross-incompatible with non-homologous
chromosome pairing and require special techniques such as embryo
rescue to achieve gene transfer (Jena, 2010). The tertiary gene pool
complexes include the O. meyeriana, O. ridleyi, and unclassified O.
schlecteri and O. coarctata species, which are highly cross-
incompatible with O.sativa, producing anomalous, sterile or lethal
hybrids (Jena, 2010; Brar and Khush, 2018). Taking into account their
evolutionary history and known polyploidization events (both ancient
and recent) (Ge et al., 1999; Lu et al., 2009), theWRs across the genus
have successfully adapted to awide range of habitats, which is reflected
in their genomic content and associated phenotypes. A subset of these
adaptive traits have been utilized for crop improvement, particularly
the genes that control major biotic and abiotic stress resistances as well
as yield-enhancement (Zhang K. et al., 2019).

TheWRs of rice show a remarkable adaptive plasticity to a diverse
set of habitats, often with extreme or suboptimal conditions (such as
lack of freshwater, high temperatures, and flooding). This adaptivity
has resulted in a range of beneficial traits that have been selected to
“fine-tune” existing accessions of cultivated rice, which are crucial for
adapting to changes in environmental conditions (Table 1A). For
example, the first disease resistance gene cloned in rice was Xa21
from the AA genome WR - O. longistaminata (Song et al., 1995).
This gene confers resistance to rice blast, a devastating disease of rice.
Another gene, Bph18, which provides resistance to the brown
planthopper, was cloned from a more distant EE genome WR – O.
australiensis (Ji et al., 2016). Both of these resistance genes have been
introduced into O. sativa through marker-assisted selection to
produce at least 13 resistant varieties grown in India, Philippines,
China, and Korea (Sanchez et al., 2013). Abiotic traits such as salt
stress tolerance in O. coarctata, heat tolerance via evening flowering
in O. australiensis, early morning flowering (EMF) during the cooler
morning hours in O. officinalis, as well as genes involved in low
temperature adaptation have been identified in O. rufipogon are also
strong candidates for introgression into cultivated rice (Zeigler et al,
2014; Bheemanahalli et al., 2017; Biswal et al., 2019).

The WRs of rice have also been used as a source of other
agronomic traits, such as yield. For example, O. rufipogon, the
closest WR of Asian cultivated rice, was found to contain yield-
enhancing QTL (yld1 and yld2). These QTL were found to be
associated with increased yield (18% and 17%) relative to the high-
yielding Chinese hybrid rice V64 (Xiao et al., 1996). Subsequent
studies have identified other QTL in O. rufipogon linked to yield
component traits, including increased grain per panicle (e.g., gpp3.1
identified in crosses with O. rufipogon and Jefferson which is a US
japonica cultivar), and increased grain weight (e.g., gw1.1 and gw1.2
in crosses with Brazil Caiapo japonica cultivar) (Moncada et al.,
2001; Thomson et al., 2003). Besides yield-component traits, a
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TABLE 1A | Wild Species in the genus Oryza and available resources.

Ref Biotic Traits of Interest Ref

2,4 Resistance to BB, SB, tungro, and YSB 2, 3,5

4 Resistance to GSV and BB 2,3,5
1,4 Resistance to BB and

nematodes
5

1 Resistance to BB 5
4
1,4
1 Resistance to GSV, BB, and

YSB
2,3,5

1 Resistance to BPH and ZLH 3
1 Resistance to BPH and ZLH 3

Resistance to BPH, GSV, BB, SB, and blast 2,3,5
1,4 Resistance to BPH, GSV, BB, GLH, WPH, and blast 2,3,5

4 Resistance to BB 5
4 Resistance to BPH, WBPH,

and GLH
3

1 Resistance to GSV, BB, and
BPH

2,3

Resistance to stem borer 3
1,4
1 Resistance to BPH, GSV, BB, and blast 2,3

1 Resistance to blast, BB and
stem borer

2,3

Resistance to BPH, BB and
blast

2,3

1,3

1

Resistance to GSV, BB and yellow stem borer 2,3
3,4
1

orer; ZLH, zigzag leafhopper; GLH, Green leafhopper; 1 – Atwell et al., 2014;
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Species 2n Genome Type Distribution Abiotic Traits of Interest

Oryza sativa complex
O. rufipogon sensu lato 24 AA Asia, Oceania Iron, acid, drought, submergence and

aluminum tolerance
O. nivara 24 AA Drought Tolerance
O. glaberrima Steud. 24 AA (cultivated) Transpiration efficiency, heat, iron, acid,

aluminum, salt, and drought tolerance
O. barthii A. Chev. 24 AA Africa Heat and drought tolerance
O. glumaepatula Steud. 24 AA Central/South America Submergence Tolerance
O. meridionalis Ng 24 AA Oceania Transpiration efficiency, heat tolerance
O. longistaminata Chev. et Roehr 24 AA Africa Transpiration efficiency, heat and drought

tolerance, and temperature plasticity
O. officinalis complex multiple
O. punctata Wall ex Watt, diplo. 24 BB Africa Drought tolerance and temperature plasticity
O. schweinfurthiana Wall ex Watt, tetra. 48 BBCC Africa Drought tolerance and temperature plasticity
O. minuta J.S. Presl ex C.B. Presl. 48 BBCC Asia, Oceania
O. officinalis Wall ex Watt 24 CC Asia, Oceania Drought and heat tolerance, and moisture

plasticity
O. rhizomatis D.A. Vaughan 24 CC Sri Lanka Drought and submergence tolerance
O. eichingeri Peter 24 CC Africa, Sri Lanka Submergence tolerance

O. latifolia Desv. 48 CCDD Central/South America Flooding tolerance, moisture plasticity

O. alta Swallen 48 CCDD Central/South America
O. grandiglumis (Doell.) Prod 48 CCDD South America Flooding and submergence tolerance
O. australiensis Domin 24 EE Australia Transpiration efficiency, temperature and

drought tolerance
O. ridleyi complex HHJJ
O. ridleyi Hook 48 HHJJ Asia, Oceania Low radiation and moisture plasticity, and

flooding tolerance

O. longiglumis Jansen 48 HHJJ New Guinea

O. granulata complex GG
O. granulata Nees et Arn ex Watt 24 GG Asia, Oceania Cold tolerance, low radiation, temperature,

moisture plasticity, and aerobic soil adaptation
O. meyeriana (Zoll. et Mor. ex Steud.)
Baill

24 GG Asia, Oceania

Others multiple
O. brachyantha Chev. et Roehr. 24 FF Africa
O. coarctata 48 KKLL Asia Salt Tolerance
O. schlechteri Pilger 48 HHKK New Guinea Flooding Tolerance

BB, Bacterial blight; RYMV, ice yellow mottle virus; BPH, brown planthopper; WPH, whitebacked planthopper; GSV, grassy stunt virus; YSB, yellow stem
2 – Toriyama, 2005; 3 – Jena, 2010; 4 – Menguer et al., 2017; 5-Vikal et al., 2007.
b
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knowledge gap exists regarding WRs that may have superior
nutritional and/or taste qualities. For example, seed from the
KKLL genome WR O. coarctata is known for its sweet palatable
taste and is consumed as a local delicacy in Bangladesh (Kabir and
Humayun, 2012). Overall, such traits could potentially be utilized in
cultivated rice to address the nutritional needs and flavor
preferences of a growing population.

Beyond the association of traits to genes-of-interest, polyploidy in
crops often confers greater genome plasticity and adaptation. The
polyploidWRs of rice are likely to be more adaptive than their extinct
diploid progenitors and may exhibit higher adaptability to extreme
habitats, different climates, soil types, drought/submergence
conditions, and biotic stresses (Van de Peer et al., 2017). In rice,
hormone responses and differential expression of stress-response genes
due to polyploidy confer autotetraploid rice with better drought-
tolerance characteristics than diploid rice. Autotetraploid O. sativa
(produced by colchicine-treatment to cause genome doubling) was less
affected under severe drought stress, with less effect on net
photosynthetic rates and peroxidation levels of its cell membranes
demonstrated higher activity of the enzymes (superoxide dismutase,
peroxidase, catalase) implicated in decreasing the amount of reactive
oxygen species, which limited membrane lipid peroxidation (Yang
et al., 2014). The authors hypothesized that the gene dosage effects due
to polyploidy are the reason for drought tolerance in autotetraploidO.
sativa. Similarly, polyploidy was found to confer rice growth and
survival advantages under salt stress. When exposed to salt stress, four
pairs of polyploid accessions, created from diploid progenitors,
presented higher salt tolerance via dry weight, chlorophyll a/b
content, and mortality rates of the tetraploids (Jiang et al., 2013). In
addition, root ultrastructure imaging revealed decreased membrane
damage and increased stability of nuclei and membrane organelles in
the roots of tetraploid rice compared to diploid rice under salt stress
(Tu et al., 2014). As the salt-induced production of reactive oxygen
species affects membrane integrity via lipid/protein peroxidation, it is
hypothesized that increased stability of membranes, nuclei and
membrane organelles is an indication of normal metabolism under
salt stress in roots of the tetraploid rice (Tu et al., 2014). Previously,
tetraploid rootstocks in citrus have been demonstrated to be more
tolerant to salt stress as compared to the corresponding diploid
rootstocks (Saleh et al., 2008). These examples show that polyploidy
can be advantageous due to potential dosage effects. However, a better
understanding of genome content and structure is required, besides
the trait-associated genes and QTL, to identify advantageous traits in
the WRs for their introgression into cultivated backgrounds.
USE OF HIGH-QUALITY REFERENCE
GENOMES TO AID IN CROP
IMPROVEMENT

For crop improvement of the genus Oryza, breeders require
access to a comprehensive set of genomic tools that can bridge
the 27 species and 11 genome types that Oryza has accumulated
over 15 million years of evolutionary history. The International
Oryza Map Alignment Project (I-OMAP), established in
2003, set out to create a genus-level comparative genomics
Frontiers in Plant Science | www.frontiersin.org 4
platform for the interrogation of the genus Oryza and provide
information on rice-related genome evolution and organization,
comparative genomics, physiology, biochemistry, and crop
improvement. I-OMAP began with the generation of a set of
publicly available deep-coverage BAC libraries and manually
edited physical maps for cultivated rice and WRs used in active
breeding programs (Jacquemin et al., 2013). These resources led
to many early discoveries on the genome biology of Oryza, and
grasses in general, and facilitated the generation of several draft
genome assemblies, including that of African rice (Wang et al.,
2014; Stein et al., 2018).

Recently, I-OMAP generated a set of 15 PSRefSeqs from one
representative accession for each of the 15 sub-populations of
O. sativa, based on the 3,000 rice genome (3K-RG) dataset, to be
used as a reference guide to characterize all standing natural
variation within Asian cultivated rice (Zhou et al., 2020). A
PSRefSeq is defined as a high-quality near gap-free chromosome-
level reference genome validated with optical maps. TheO. sativa
PSRefSeq dataset is composed of 12 newly sequenced genomes
(Zhou et al., 2020), and 3 previously published genomes for
Minghui 63 (MH63), Zhenshan 97 (ZS97) and N22 (Zhang et al.,
2016a; Zhang et al., 2016b; Stein et al., 2018). The average
number of contigs for these 15 assemblies is 113 contigs (i.e.,
912, 237, and 181 for N22, MH63, and ZS97, respectively, and an
average of 30 contigs for the remaining 12). The average number
of gaps across the 15 assemblies is 46, with 8 out of 15 having less
than 10 gaps (Zhou et al., 2020).

For ZS97 and MH63, genome completeness was estimated at
~92.7% (ZS97), ~94.8% (MH63) using the CEGMA pipeline with a
core set of 248 eukaryotic genes (Parra et al., 2009). BUSCO
evaluations for the remaining 13 genomes, which interrogate a
much larger core gene set (N=956 for N22 and N=1,427 for the 12
newly sequenced assemblies), averaged 98.6%, and demonstrates the
high contiguity and completeness of the majority of the O. sativa
PSRefSeq dataset (Simão et al., 2015). When compared with
previously released rice genomes, the O. sativa PSRefSeq data set,
described here, providesmore contiguous and accurate sequence data
which, thereby, will improve further downstream analysis such as TE
(transposable element), centromere/telomere and gene annotations.

The O. sativa 15 PSRefSeq dataset, combined with the original
IRGSP RefSeq (International Rice Genome Sequencing Project, 2005;
Kawahara et al., 2013), presents a multiple reference pan-genome
template for the primary gene pool of Asian cultivated rice for
mapping resequencing data that can accurately characterize genetic
variation at the subpopulation level (Zhou et al., 2020). Given that
this PSRefSeq dataset is now publicly available, the next logical step is
to produce PSRefSeqs that represent the secondary and tertiary gene
pools of the genus Oryza, and when combined, will create an
unprecedented pan-genome for the entire genus – i.e., a “pan-
genus-genome” or Oryza-PGG. Currently, I-OMAP is producing a
set of PSRefSeqs from the representatives of all 25 WRs and O.
glaberrima, using a combination of long-read sequencing
technologies and optical maps (Udall and Dawe, 2018), with a
target release date of December 2020.

The Oryza PGG will provide the full range of short, medium,
and long-range structural variations that exist across the genus.
September 2020 | Volume 11 | Article 579980
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Moreover, the Oryza PGG will confirm previously discovered
structural variants (SVs) and the presence/absence of variants
(PAVs). Zhou et al. (2020) recently showed that the majority of
PAVs in the subpopulations of O. sativa are comprised of
transposable elements (TEs). The Oryza PGG will allow us to
better annotate and understand TEs in the WRs of rice and shed
light on the contribution of TEs to genome size variation and
genome plasticity of adaptive traits. For instance, the TE content of
O. coarctata was estimated to be the lowest among Oryza species,
despite a predicted genome size of 665 Mb (Zuccolo et al., 2007;
Mondal et al., 2018).

Analyses of the Oryza PGG will also reveal the vast majority
of single gene and gene family content and evolution across the
genus. Previously, Zhang L. et al. (2019) leveraged the genomic
data available for 13 Oryza species (domesticated and wild) to
study the formation of de novo protein-coding genes. They
identified 175 candidate de novo genes and estimated the rate of
de novo gene origination as 51.5 de novo genes per MYA. De
novo originated genes can provide novel biological functions
and have previously been shown to play a key role in pathogen
resistance in plants (Chen et al., 2013). For instance, OsDR10 is
an Oryza-lineage specific de novo originated gene that confers
broad-spectrum bacterial blight resistance when suppressed in
rice (Xiao et al., 2009). Currently, OsDR10 is characterized as an
“orphan” gene and there is currently little information on its
evolution in the Oryza lineage. Once the Oryza PGG becomes
available, the evolutionary mechanisms contributing to the
generation of OsDR10 may be revealed and thus, provide
insights into new gene evolution across the genus.

Finally, PSRefSeqs of each species will also aid conservation
efforts by serving as “platinum standard” templates for
characterizing the diversity of seed bank materials. This
information will guide the management of genetic resources
through in-situ conservation efforts to capture the genetic
diversity in the wild or ex-situ collections of the newly identified
wild populations (Brozynska et al., 2016). Some of the WRs in the
genus are endangered or, as in the case of O. neocaledonica (Molla
et al., 2018) and O.schlecteri absent from known genebank
collections (Germplasm Resources Information Network, n.d.).
From an evolutionary perspective, gained or lost SVs and copy
number variations (CNVs) can be indicative of local adaptation of
wild populations to unique habitats. The information gained from
PSRefSeqs will help in the long-term maintenance of wild
populations in their native habitats.
BARRIERS TO GENETIC INTROGRESSION
AND ALTERNATIVE STRATEGIES TO
INTROGRESSION VIA
NEODOMESTICATION OF WR
RICE SPECIES

For the successful introgression of desired traits from the WRs of
rice, incompatibility barriers between the secondary, tertiary, and
primaryOryza gene pools must be overcome (Harlan and de Wet,
Frontiers in Plant Science | www.frontiersin.org 5
1971; Vincent et al., 2013). The introgression of desirable traits
within the AA genomes is relatively straightforward compared to
the introgression of traits from more distant complexes. For
instance, crossing WRs from the secondary/tertiary gene pools
is more laborious and can require embryo rescue and
chromosome doubling to produce interspecific hybrids and
alien introgression lines (AILs). For the closely related O.
officinalis complex species, monosomic alien addition lines
(MAALs) and interspecific hybrids, with O. sativa as the
recurrent parent, have been successfully produced to carry the
following biotic stress-resistance traits: brown planthopper
resistance, whitebacked planthopper, and bacterial blight
resistances from O. officinalis, O. minuta, and O. latifolia,
respectively (Brar and Khush, 2018).

Despite the successes achieved by introgression from the O.
officinalis complex, crossing O. sativa with more distant WRs is
difficult and time-consuming, and can result in progeny depression
or complete progeny sterility. Moreover, linkage drag of loci, related
to negative traits such as low yield, and shattering can also occur
(Xiao et al., 1998). For the meyeriana complex, breeding efforts
resulted in 40 derived lines ofO. sativa xO. granulata, some ofwhich
were found to contain partial alien chromosome introgressions from
two out of six O. granulata chromosomes analyzed. However, no
favorable traits (such as cold and low radiation tolerances) were
found to be introgressed from O. granulata (Brar et al., 1996).
Similarly, attempts to produce hybrids from O. sativa x O. ridleyi
and O. sativa x O. coarctata crosses failed due to necrosis in the
progeny or progeny sterility, respectively, thereby demonstrating the
difficulty of hybrid formation between distant WRs of rice with O.
sativa (Brar and Khush, 2018).

“Neodomestication” represents an alternative strategy to
conventional trait introgression from a WR into a domesticated
species. This method preserves adaptations to biotic/abiotic stresses
while exhibiting the traits of a domesticated crop (e.g., loss of
shattering, erect growth, larger seeds). For example, homologues of
genes involved in the domestication of rice in the WRs could be
targeted for neodomestication to produce a domesticated ideotype in
a WR. Shapter et al. (2013) presented an early example of an
accelerated neodomestication process using random EMS
mutagenesis to initiate the domestication of weeping rice grass
(Microlaena stipoides), which resulted in the generation of two
non-shattering mutant plants in the orthologs of qSH1 and sh4.
Now, with gene editing technology such as CRISPR-Cas9 (Bortesi
and Fischer, 2015), it is possible to precisely edit homologues of well-
studied domestication genes in crop WRs, such as those listed in
Table 1B, to activate genes, modify alleles, introduce targeted base
substitutions, delete large genomic segments, or introduce complete
genes previously unavailable in a given species (Fernie and Yan,
2019). Besides targeting orthologues of domestication genes for
neodomestication of WR Oryza candidates, CRISPR/Cas9 gene
editing could be used to introduce WR candidate genes implicated
in favourable traits such as abiotic stress tolerances into the cultivated
rice background by overcoming the reproductive Oryza gene pool
barriers (Harlan and de Wet, 1971).

As a proof-of-concept study for neodomestication using gene
editing, Zsögön et al. (2018) targeted six key domestication traits for
September 2020 | Volume 11 | Article 579980
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loss of function in the wild tomato S. pimpinellifolium (i.e., SP, SELF-
PRUNING; O, OVATE; FW2.2, FRUIT WEIGHT; LYCOPENE
BETA CYCLASE, FASCIATED, MULTIFLORA). Four of the six
genes (i.e., all except FASCIATED and MULTIFLORA) were
successfully targeted and contained indel mutations, which
resulted in a WR with a domesticated “phenotype”, i.e., an altered
morphology, a three-fold increase in fruit size, a ten-fold increase in
fruit number compared to theWR, and a 500% increase in lycopene
accumulation in the fruit, relative to the cultivated Solanum
lycopersicum (Zsögön et al., 2018).

Similarly to wild tomato, neodomestication of the WRs of
rice is theoretically possible, albeit non-trivial. O. coarctata is
an attractive candidate for neodomestication because it is the
only halophyte in the Oryza genus and can thrive in salinity
levels of up to 40 E.CedS m−1 (i.e., brackish water salinity levels)
along the coastal regions from Pakistan to Myanmar (Bal
and Dutt, 1986). In India, the habitat of this species is similar
to that of mangrove forests where O. coarctata can be found
submerged in saline water for up to 12 h a day due to lunar tides
(Bal and Dutt, 1986; Mondal et al., 2018). For decades, rice
breeders have tried to introgress the halophyte characteristics of
O. coarctata into cultivated rice with limited or no success (Brar
and Khush, 2018; Prusty et al., 2018). Thus, O. coarctata is an
ideal candidate for neodomestication and, if successful, would
allow farmers to grow rice on land that otherwise is unable to
support conventional rice farming practices. A proposed
methodology for the neodomestication of O. coarctata
includes the targeting of orthologues of domestication genes
in O. coarctata (Table 1B) with precise gene editing. An O.
coarctata PSRefSeq will enable less off-target CRISPR/Cas9
Frontiers in Plant Science | www.frontiersin.org 6
enzyme effects (not attributed to the enzyme mode of action)
as the contiguity and fidelity of the PSRefSeq allows for better
precision for single guide RNA (sgRNA) selection (Biswal et al.,
2019). Moreover, O. coarctata, unlike S. pimpinellifolium, is not
a direct progenitor of the cultivated O. sativa and is a polyploid
which, besides affecting the number of domestication-related
genes, also translates to a vast difference in the genome
structure, thereby making gene editing more challenging
due to the potential linkage of domestication genes to non-
desirable traits (i.e., linkage drag). Given the paucity of available
genome assembly resources, a PSRefSeq for O. coarctata
would play a vital role in the precise identification of the
orthologues of domestication genes that could be targeted
for neodomestication.
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