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Abstract
Background: Cooking quality is an important attribute in Common/Asian rice (Oryza sativa L.) varieties,
being highly dependent on grain starch composition. This composition is known to be highly dependent
on a cultivar’s genetics, but the way in which their genes express different phenotypes is not well
understood. Further analysis of variation of grain quality genes using new information obtained from the
wild relatives of rice should provide important insights into the evolution and potential use of these
genetic resources.

Findings: The analysis of the protein sequences of grain quality genes across the Oryza suggest that the
deletion/mutation of amino acids in active sites result in variations that can negatively affect speci�c
steps of starch biosynthesis in the endosperm. As observed in O. sativa subsp. japonica, the lower
amylose content is probably related to the absence of a C-terminal domain in PUL, characterizing what
we know as japonica genotypes. On the other hand, the complete deletion of some genes in the wild
species do not affect the amylose content, as observed in the absence of GBSSII in starch biosynthesis of
O. meridionalis, SSIV2 in O. glaberrima and DPE1 in O. brachyantha and O. nivara in which such
modi�cations seem not to affect the �nal endosperm starch composition.

Conclusion: Here we present new insights for obtaining new starch-speci�c rice phenotypes, considering
structural protein features that include both the absence and duplication of copies, once again denoting
that Oryza species are a rich source of variability for use in plant breeding.

Findings
Common rice (Oryza sativa L.) is a food of great importance worldwide, especially in Asian countries,
where it is an important part of local culture. Being widely consumed and having different forms of
preparation makes “quality” something different in each country around the world. Nevertheless, no
matter what grain quality means, its demand is increasingly becoming a priority for international export
markets worldwide.

Today cooking behavior has become one of the most important research components in several rice
breeding programs where characteristics such as amylose content (AC) and gelatinization temperature
(GT), which have major effects on cooking quality (CQ) and consumption, are controlled by
physicochemical properties of starch in rice grain endosperm (Pandey et al., 2012).

The ratio of amylose to amylopectin as well as the structure of amylopectin itself can vary greatly
between different rice genotypes (Yu et al., 2011). Generally, grains with higher amylose content present a
harder non-sticky texture after cooking, being preferred in several countries. Such a feature is usually
evaluated during grain development in different cultivars (Walter et al., 2008). However, the genetic events
that lead to this type of grain are not well understood and genotypes that deliver such grains are not
easily obtained. That is the reason why it is so important to understand the behavior of grain-quality-
related genes, which enable more e�cient and precise breeding applications.
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The 27 known Oryza species span over 15 million years of evolution which we can take advantage of,
since it constitutes a rich source of genetic variation. Though a better understanding of the genomic
differences between these species is essential for such a purpose, the recent publication of the genomes
of 13 rice species has opened the door to a series of new studies that make it possible to enrich the
germplasm that can be used for breeding (Santos et al., 2017; Stein et al., 2018). The possibility of using
these wild species to improve grain quality should also be considered, but what would be the �rst genes
to start such an analysis?

Considering the importance of Starch Synthesis-Related Genes (SSRGs) in the control of CQ and the
limited exploration of the information recently made available to the scienti�c community on Oryza
genomes, an evolutionary analysis is needed to reveal the role of adaptive mechanisms before and after
rice domestication. It will thus help to understand the complexity of the evolution of enzymes involved in
the starch synthesis pathways, and further provide the basis for approaches that can generate new
phenotypes trough new strategies to modify starch synthesis. We therefore selected a set of SSRGs
according Zeng et al. (2017) to explore their evolution across the genus Oryza. The Additional �le 1: Table
S1 present all SSRGs identi�ed in 11 Oryza species and Leersia perrieri.

Agpase Subunits
The phylogenetic tree of the AGPase genes, which include both large (AGPL1, AGPL3, AGPL4) and small
(AGPS2a) subunits, identi�ed 48 genes across the Oryza and the outgroup (L. perrieri), which revealed 3
different groups (Fig. 1 and Additional �le 2: Figure S1).

The �rst group is formed by the AGPS2a genes with both large exon and intron structures. This group is
believed to have the highest similarity to the ancestor of every Oryza AGPase gene. O. meridionalis (AA)
also contains the same large exon structure in the second group formed by AGPL4 and likewise, in the
third clade which is a mixture formed by AGPL3 and AGPL1, respectively.

The evolution of large and small ADP proteins subunits in Oryza was markedly different, probably due to
different rates of selection pressure that were denoting diversi�cation in AGPS2a (Figure S1B).
Recombination analysis based in the alignment do not show any evidence of recombination in the AGP
partition. On the other hand, positive selective pressure (dN/dS > 1) was detected in the sequence
alignments, suggesting evidences of diversifying selection (Fig. S3). Small subunits were under higher
purifying selection than the large subunits, being thus responsible for most of the diversity of AGPase
gene and allies (Batra et al, 2017; Georgelis et al., 2007). These would be the regions that concentrate
most of the positive selection, since they also demonstrate most of the variability. One explanation for
this would be that in large subunits most duplications occur when compared to small subunits of
AGPase genes (Georgellis et al., 2008). However, NHR cannot yet be ruled out, since our data are in
accordance with previous reports that indicate that NHR are probably more frequent than MEI in Oryza
species (Bai et al., 2016). On the other hand, contrasting evolutionary patterns are expected among
paralogues, and in AGPase, some duplications have been accompanied by a change of cellular
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compartmentalization (e.g. from plastid to cytosolic) or changes in expression with subsequent
modi�cation of regulation properties (Corbi et al., 2012).

Regarding to gene position, all Oryza species have AGPS2a positioned in Chr 8, of note, we observed that
OMERAGPS2A and ONIVAGPS2A are located on two different chromosomes (i.e. Chr 9 and Chr 4,
respectively (Fig. 1)), being necessary investigate what led to these genes change their position or what
mechanism was involved in that. Possible differential Mobile Element Insertion (MEI) events related to
these loci was investigated, a region of 50 kb up- and downstream of these genes were aligned, showing
high similarity between OMERAGPS2A (AA) to AGPS2a of other species, which means that this change in
position probably did not occur through TE insertion (Fig. S2).

On the other hand, Non-Homologous Recombination (NHR) is likely to have occurred in this region,
placing this large block (upstream + gene + downstream) on Chr 9. The locus from O. nivara in Chr 4 has
only a small ortholog block that corresponds to the end of the upstream region and the start of the
downstream region. Small up- and downstream fragments similar to speci�c LTR-TEs were found using
the Rice Transposable Elements database (RiTE-db), but it is unlikely that these are responsible for a
translocation event. As previously reported, the most frequent events responsible for changing copy
number variations and gene position to other chromosomes are mediated by either transposons, through
MEI, or NHR, for both Oryza and Arabidopsis (Bai et al., 2016; Freeling et al., 2018).

In Oryza and other plants, the AGPase protein subunit is characterized by a core region that is important
for catalytic activity, called the nucleotidyl transferase domain (NTP_transferase) that is important in
providing the substrate for starch biosynthesis. The conserved motifs of the four analyzed ADP-glucose
pyrophosphorylase subunits form a signature pattern, revealing that motifs 9 and 10 are not detectable in
the NTP_transferase domain of AGPS2a; the same occurs for motifs 8 and 9 in AGPL4; 7, 8 and 9 in
AGPL1; and 3, 6, 8 and 9 in AGPL3 which are not found in some Oryza species. The absence of speci�c
motifs can affect the endosperm starch synthesis limiting the reaction converting Glucose 1-Phosphate
(Glc-1-P) and Adenosine triphosphate (ATP) to ADP-glucose and inorganic pyrophosphate (PPi) in
amyloplasts, directly re�ecting the control of carbon �ux into the starch accumulation pathway,
consequently causing a shrunken endosperm in rice (Smith et al. 1997; Pandey et al., 2012; Qu et al.,
2018).

Starch Synthesis (ss) Genes
A total of 92 protein coding SS genes were found across the 12 genome data set, while its phylogenetic
analysis allowed the identi�cation of nine different clades based on sequence similarity. Clades I, II, III, IV,
V, VI, VII, VIII, and IX typically represent SSIV1, SSI, Waxy, SSIII1, SSIII2, GBSSII/ALK, SSII2, SSII1 and
SSIV2, respectively (Fig. 1 and Additional �le 5: Figure S4).

The phylogenetic analysis showed that in most Oryza species, SS isoforms have undergone different
degrees of gene duplication, something that is also observed in most plant species. Oryza clades I, IV, V,
IX possess a different genetic origin from clades II, III, VI, VII and VIII and, since paralogous genes tend to
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slowly accumulate variations over time, it is easy to notice a large variation when we compare SS genes
between these two clades (Patron and Killing, 2005; Deschamps et al., 2008; Ball et al., 2011; Guo et al.,
2019). The distinct spatial pattern of starch deposition within a caryopsis, which is also related to
differences in the temporal expression pattern between early (SSIII1, SSII2, GBSSII) and late (ALK, SSIII2,
Waxy) expressed genes (Hirose and Terao, 2004), is probably the result of variations accumulated over
time. Overall, the phylogenetic tree analysis reveals a highly conserved structure for both gene and amino
acid sequences, suggesting a strong evolutionary relationship between species in each SS.

Some genes that have long exons near the 5' or 3' UTRs, as observed in few SS proteins of L. perrieri, O.
longistaminata, O. brachyantha and O. meridionalis, seem to be ancestors of other species SSs.
OMERSSIV1_2D (Clade I) is a probable result of a sub-functionalization since it does not contain motifs 4,
7, and 8, that represent the catalytic domain of starch synthase (Glyco_transf_5) and (Glyco_transf_1).

Another recent duplication was identi�ed in the O. meridionalis SSIII1 gene, but in this case both the
original and duplicated copies look functional, containing all the motifs that are part of its characteristic
domain, however the large size of OMERSSIII1_1D (7,844 bp longer than the original copy) is something
that deserves more investigation, especially when we take into account the highly conserved pro�le of
these genes. It is also important to notice that the same large domain occurs in duplicated copies of SSII2
and Waxy in the outgroup L. perrieri.

Taking into account that sequence variation in SSRGs have a great in�uence in rice amylose content,
gelatinization temperature, and amylopectin chain length (Kasem et al., 2011), although important, it is
hard to understand the roles of each SS isoform in each of the characters, due to the high sequence
variation among these genes. Also, it is even more complicated when we consider its diversity of genes in
starch biosynthesis. The structural features of the genes and duplicated copies denote that these species
are a rich source of variability that can improve starch quantity and quality, mainly through modi�cations
of amylopectin synthesis chains B2 and B4 (Pandey et al., 2012).

Expressed speci�cally in the developing rice endosperm and leaves, SSIII 1 and 2 include 3 other repeated
domains in addition to the starch synthase domain. An N-terminal Carbohydrate-Binding Module (CBM)
domain is a contiguous amino acid sequence within a carbohydrate-active enzyme with carbohydrate-
binding activity. Although no lack of protein motifs were observed that could affect the catalytic domain
in SSIII, in O. sativa this domain synthesizes long chains, and a de�ciency in SSIII1 that is the second
major enzyme (Fujita et al., 2006), can indirectly enhance both the SS-I and GBSS-I gene transcripts. On
the other hand, a survey of amino acid motifs of SS isoforms reveals that certain motifs are absent in
certain Oryza species, as it is possible to notice in OsINDSSIV1, OLONSSIV1, OBARSSII2 and OMERSSII2,
which are part of the two C-terminal domains. This may affect the catalytic performance of the chain-
elongation reaction of α-1-4-glucosidic linkage, which can further complicate the interplay between SS,
SBE and DBE (Myers et al., 2000; Nakamura, 2002).

Waxy is believed to be the main enzyme that controls high amylose content in Oryza species and, with
GBSSII, present tissue-speci�c expression in a complementary manner between endosperm and non-
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endosperm tissues, causing different characteristics with respect to amylose content, and branch length
distribution in amylopectin (Wang et al., 2019). Thus, the differential action of these two enzymes affect
the �nal amylose content in the endosperm. Despite this, the absence of GBSSII (Table S1) does not
in�uence the high content of amylose in the endosperm (about 35%) of O. meridionalis (Mondal & Henry,
2018). Despite the evolutionary advantage that the presence of the two enzymes (Waxy and GBSSII)
confer for starch biosynthesis, Waxy enzymes without GBSSII seem to be enough for high amylose
accumulation in Oryza endosperm, something that brings new perspectives for the improvement of this
complex network (Vrinten and Nakamura, 2000; Tian et al., 2009; Wang et al., 2019).

On the other hand, the loss of SSIV2 in O. glaberrima during evolution does not eliminate the ability of
chloroplasts in producing starch granules, since features in the N-terminal extension of SSIV enable the
interaction with other proteins contributing to granule initiation. In Arabidopsis, when the SSIV glucosyl
transferase domain is absent, a signi�cant reduction of starch synthesis is observed (Szydlowski et al.,
2009; Zeeman et al., 2010).

Some Oryza species and L. perrieri show changes in chromosome position of the SS genes relative to O.
sativa (Fig. 1), such as OMERSSII1 from Chr 10 to 4 (Additional �le 6: Figure S5), OMERSSII2 from Chr 2
to 6, ONIVSSII2 from Chr 2 to 6 (Additional �le 7: Figure S6) and OLONSSIV2 from Chr 5 to 9 (Additional
�le 8: Figure S7). An alignment analysis shows that for OMERSSII1 and OMERSSII2, the change did not
occur through a differential TE insertion, since an analysis of 50 kb upstream and downstream of each
gene shows a lack of or just partial synteny (fragments from approximately 40 Kb) between the other
Oryza loci. In case of partial sinteny, a signi�cant presence of TEs in this region was not identi�ed using
the with RiTE-DB. Interestingly, OMERSSII2 contained an inverted region of 50 kb that denotes an unusual
rearrangement by translocation and inversion of blocks up- and downstream of the gene (Additional �le
6: Figure S5, Additional �le 7: Figure S6).

Interestingly, recombination events were found both for ALK and Waxy gene copies (Additional �le 9:
Figure S8, Additional �le 10: Figure S9), being the strongest evidence for the last gene family. However,
the same was not observed for the other SS copies, where 117 were found to be under positive selection
(Additional �le 11: Figure S10) with no recombination events were detected. This agrees with previous
reports, in which the diversi�cation in these genes was suggested to be driven by a large number of
duplication events instead of recombination events (Nougué et al, 2014).

Debranching Enzymes (dbe)
The DBE genes are classi�ed as DPE1 (Disproportionating enzyme), PUL (Pullulanase) and ISA
(Isoamylase). In total 35 genes DBE were identi�ed in Oryza and L. perrieri 12 genome data set (Fig. 1 and
Additional �le 12: Figure S11). The phylogenetic analysis showed that the DBE proteins can be grouped
in two clades, one that comprises DPE1 (Group I) and the other consisting of a mixed group composed of
PUL and ISA genes (Group II).
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DPE1, despite forming a conserved clade, presents some variations in its two subgroups. First, O.
meridionalis (AA) shows the longest gene structure, with more than eight exons, being the longest in its 5’
UTR, something that contrasts with the usual short structure of DPE1 genes. Despite that, OMERDPE1,
OBARDPE1 and OLONDPE1 lack motif 9, which is part of glycoside hydrolase family 77 domain
(Glico_transf_77), a domain responsible for cleaving the starch granule into smaller glucan molecules.
Additionally, this protein is part of Group 1, which comprise enzymes that act in the initial phase of
endosperm development (Tian et al., 2009), playing an important role in grain quality improvement
programs (Zeng et al., 2017). On the other hand, a total absence of DPE1 was observed in O. nivara and
O. brachyantha. Although there is not much clarity about the performance of DPE1 in Oryza chloroplasts,
it is known that Arabidopsis plants lacking the plastidic DPE1 accumulate maltooligosaccharides
(maltotriose-maltoheptaose), but not maltose, an important carbohydrate in starch formation (Critchley et
al., 2001).

Completely different from DPE1, regarding its phylogenetic position and structure, but also showing an
important in�uence in the �nal portion of the starch synthesis pathway in Oryza, the enzymes PUL and
ISA catalyze different reactions, but both have a conserved gene structure. Although they play unique
roles in regulating the crystallization and degradation of starch, the enzymes have a close relationship in
Oryza and share, as expected, the N-terminal O-Glycosyl hydrolase (CBM_48) and central domain alpha-
amylase (Aamy), in which both degrade amylopectin. However, in some species like O. sativa v.g.
japonica and O. longistaminata, there is still an absence of the C-terminal domain DUF_3372 domain (Fig.
S4), which characterizes the Pullulanase, and usually cleaves the α-1,6-linkages of polyglucans in
pullulan. This absence may affect the �nal endosperm amylose content. The main gene that controls
amylose is Waxy, but as starch synthesis is a �ne regulatory network, together with other enzymes like
PUL, AGPase, SSI, ALK, and SSIII2, they control the �nal content of amylose (AC). However, in the absence
of pullulan degradation, the �nal starch content may be lower, and consequently the AC (Tian et al.,
2009). Exactly what is perceived in the O. sativa v.g. japonica genotypes that have amylose content
around 10–22% (low AC) while O. sativa v.g. indica show 18–32% (high AC) (Lang and Buu, 2004; Ayabe
et al., 2009).

On the other hand, ISA, different from PUL, contains long and frequent introns in its gene structure,
besides it also possesses every single motif that form the formerly discussed protein signature. We
identi�ed an event in O. glaberrima where PUL (Fig. 1) is duplicated and translocated from Chr 4 to Chr 6
(Additional �le 13: Figure S12). Although NHR constitutes a relatively frequent event in Oryza genomes,
one might think that MEI could also be the responsible for such duplication and translocation, since these
events frequently generate syntenic failures between homologue chromosomes when comparing
different species (Ammiraju et al., 2008), though here we show (Fig. S12) that it is not possible that MEI
insertion could have occurred in these PUL genes. Neither any recombination inference was found.
However, 43 sites were observed to be under positive selection (Additional �le 14: Figure S13) in DBE, ISA
and PUL gene copies phylogeny. The same event could also have occurred in the other genes that have
different chromosome positions (Fig. 1). Both Nougué et al. (2014) and Qu et al (2018) reports DBE
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homologue diversi�cation could be explained by the strong positive selection under these genes, as well
support its prominence along the complex evolutionary history of starch biosynthesis pathway.

Starch Branching Enzymes (sbe)
In total, 24 SBE genes were identi�ed in Oryza and L. perrieri (Fig. 1 and Additional �le 15: Figure S14).
Positive selection was found in the gene alignment (Additional �le 16: Figure S15), but no recombination
events were detected. According to the position of L. perrieri in the phylogenetic tree, SBEs are de�ned as
a mixed clade, that present a very conserved gene structure and protein signature that comprises SBE3
and SBE1. Although the conserved motif analysis showed that motif 9 is not present in OPUNSBE3 and
OMERSBE3, they contain many more exons than the SBE3s of other Oryza species. Oryza species present
multiple SBE isoforms, more than shown here, but these are the major genes involved in the synthesis of
amylopectin (Zeng et al., 2017). SBE proteins are characterized by a modular architecture composed of
an N-terminal domain with a carbohydrate-binding module family 48 (CBM48), a central α-amylase
domain, as well as a α-amylase C-terminal domain. Both C and N termini play important roles in
determining the substrate preference, catalytic capacity and chain length transfer (Kuriki et al., 1997). The
importance of SBE1 in synthesis of B1, B2, B3 chains of amylopectin has been reported in rice mutants
(Satoh et al., 2003a, b), while others show that SBE3 has a role in the synthesis of 1–6 branching linkage
(Chen et al., 2004). In Oryza, these two enzymes are in the same clade. Some residues of binding sites for
maltopentaose and glucose were not conserved between SBEI and SBEII isoforms, however these
residues were mainly found in SBEIII, which seems to be the reason for such a close proximity between
SBE1 and SBE3 in Oryza (Qu et al., 2018).

In summary, we identi�ed and characterized SSRG homologs in the wild relatives of rice. Using
phylogenetics and comparative genomics analyses we offer insights for the use of their gene variations
in plant breeding. We con�rmed the relative conservation of SSRGs between species within the AA-, BB-
and FF-genomes, but structural analysis of these proteins suggest that deletions/mutations of amino
acids in some active sites can result in structural variation that may negatively affect speci�c phases of
starch biosynthesis. Direct modi�cation of the endosperm, as usually observed in O. sativa v.g. japonica,
which possesses lower AC, can likely be related to the absence of PUL C-terminal domain. The complete
deletion of some genes appears not to affect the �nal composition of starch in the endosperm, as
observed for GBSSII in O. meridionalis, SSIV2 in O. glaberrima, and DPE1 in O. brachyantha and O. nivara.

The analysis of structural features points to both absence and duplicated copies of some motifs that can
modify metabolic activity, denoting that the use of different Oryza species can be a rich source of
variability for starch-targeted improvement in rice. These genes should now be further investigated by
phenotyping different mutants and through the characterization of starch content of both wild Oryza
genotypes and near isogenic lines (NILs) of O. sativa containing introgressions of these wild relatives.
Such an analysis will help us to reveal the role of each variation of these genes thereby contributing
greatly to the simpli�cation of the improvement processes that involve this complex path.
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Isoamylase; PPi: inorganic pyrophosphate; PUL: Pullulanase; SBE: Starch Branching enzyme; TE:
Transposable Element; RiTE-db: Rice Transposable Elements database; LTR TEs: Long Terminal Repeats
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Figures

Figure 1

Gene localization (center) and phylogeny of SSR proteins. Center. Circular map of SSRGs in a single
representation from chromosomes 1 to 10 in Oryza species. Duplicated genes are marked with an
asterisk. Around, from the upper left, clockwise. Phylogenetic analysis of DBE, SBE, SS and AGPase
proteins. Clade groups are indicated by different colors followed by the name.
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