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One sentence summary:
A multi-genome analysis of maize reveals previously unknown variation in gene content,

genome structure, and methylation.

Abstract:

We report de novo genome assemblies, transcriptomes, annotations, and methylomes for the
26 inbreds that serve as the founders for the maize nested association mapping population. The
data indicate that the number of pan-genes exceeds 103,000 and that the ancient tetraploid
character of maize continues to degrade by fractionation to the present day. Excellent contiguity
over repeat arrays and complete annotation of centromeres further reveal the locations and
internal structures of major cytological landmarks. We show that combining structural variation
with SNPs can improve the power of quantitative mapping studies. Finally, we document
variation at the level of DNA methylation, and demonstrate that unmethylated regions are
enriched for cis-regulatory elements that overlap QTL and contribute to changes in gene

expression.

Main text:

Maize is the most widely planted crop in the world and an important model system for
the study of gene function. The species is known for its extreme genetic diversity, which has
allowed for broad adaptation throughout the tropics and intensive use in temperate regions.
Much of its success can be attributed to a remarkable degree of heterosis when divergent
inbred lines are crossed to make F1 hybrids. Nevertheless, most current genomic resources are
referenced to a single inbred, B73. Yet prior data suggest the B73 genome contains only 63-
74% of the genes and/or low-copy sequences in the full maize pan-genome (7—4). Moreover,
there is extensive structural polymorphism in non-coding and regulatory genomic regions that
has been shown to contribute to variation in numerous traits (5). In recent years, additional
maize genomes have been assembled, allowing limited characterization of the species pan-
genome and the extent of structural variation (2, 6-70). However, comparisons across genome
projects are often confounded by differences in assembly and annotation methods.

The maize Nested Association Mapping (NAM) population was developed as a means to
study the genetic architecture of quantitative traits (77). Twenty-five founder inbred lines were

strategically selected to represent the breadth of maize diversity including lines from temperate,
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tropical, sweet corn, and popcorn germplasm (72). Each NAM parental inbred was crossed to
B73 and selfed to generate 25 distinct populations of 200 recombinant inbred lines that combine
the advantages of linkage and association mapping for important agronomic traits (73).
Important biological infrastructure continues to be developed around these lines (e.g. (74—16))
but comprehensive genomic resources are needed to fully realize the power of the NAM
population.

Here we describe the 25 assembled and annotated genomes for the NAM founder
inbreds and an improved reference assembly of B73 (Table S1). In our comprehensive
characterization of maize genomic diversity, we evaluate the maize pan-genome and its
fractionation from a tetraploid ancestor, visualize the diversity of transposons and tandem
repeat arrays, deploy enzymatic methyl-seq and ATAC-seq to characterize the pan-epigenome,

and identify structural and epigenetic variation that impact phenotype.

Consistency and quality of genome assemblies

The 26 genomes were sequenced to high depth (63-85X) using PacBio long-read
technology, assembled into contigs using a hybrid approach (see Methods), corrected with long-
read and lllumina short-read data, scaffolded using Bionano optical maps, and ordered into
pseudomolecules using linkage data from the NAM recombinant inbred lines and maize pan-
genome anchor markers (4). Assembly and annotation statistics far exceed nearly all available
maize assemblies, with the total length of placed scaffolds (2.102-2.162Gb) at the estimated
genome size of maize, a mean scaffold N50 of 119.2Mb (contig N50 of 25.7Mb), complete gene
space (mean of 96% complete BUSCOs; (17)), and, based on the LTR Assembly Index (LAl,
mean of 28; (18)), full assembly of the transposable-element-laden portions of the genome
(Table 1; Table S2).

Gene identification and diversity in gene content

We sequenced mRNA from ten tissues in replicate for each inbred. These data were
used as the basis for evidence-based gene annotation of each line, which was then improved
using public B73 full-length cDNA and expressed sequence tags (ESTs). The evidence set was
augmented with ab initio gene models and the gene structures uniformly refined for all
accessions using phylogeny-based methods. This pipeline revealed an average of 40,621 (SE =

117) protein-coding and 4,998 (SE = 100) non-coding gene models per genome, with well over
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a million independent gene models generated across the 26 lines. Phylostrata analysis revealed
that the great majority of genes share orthologs with species in the Andropogoneae tribe and
grass family (Fig. 1A). The accuracy of the annotations, measured by the congruence between
annotations and supporting evidence (Annotation Edit Distance, AED) (79), is substantially
higher than previous reference maize and sorghum annotations (Fig. S$1) (2, 6, 710, 20-22).

Based on the canonical transcripts from this complete set of annotations, we assessed
the gene catalog of the pan-genome. Genes with high sequence similarity, located within blocks
of homologous sequence in pairwise comparisons, were grouped together as one pan-gene. In
many cases, a gene was not annotated by our computational pipeline in a particular inbred line,
yet at least 90% of the gene was present in the correct homologous location; when this
occurred, the pan-gene was considered present (Fig. S2 A-B; see Methods), even though in
some cases the absence of annotation may be associated with fractionation and/or
pseudogenization.

Across the 26 genomes, a total of 103,538 pan-genes were identified. Previous analysis
of the maize pan-genome reported ~63,000 pan-genes based on transcriptome assemblies of
seedling RNA-seq reads from 500 individuals (7). The superior contiguity of our assemblies, as
well as the application of both ab initio and evidence-based annotation using RNA-seq from a
diverse set of ten tissues, likely accounts for the increased sensitivity here. Over 80% of pan-
genes were identified within just ten inbred lines based on a bootstrap resampling of genomes;
the rate of pan-gene increase as new genomes were added diminished beyond this point (Fig.
1B).

Pan-genes, excluding tandem duplicates, were classified as core (present in all 26
lines), near-core (present in 24-25 lines), dispensable (present in 2-23 lines), and private
(present in only one line) (Fig. 1C). For each genotype, the portion of genes classified into each
of these groups was consistent, with an average of 58.39% (SE = 0.07%) belonging to the core
genome, 8.22% (SE = 0.05%) to the near-core genome, 31.75% (SE = 0.09%) to the
dispensable genome, and 1.64% (SE = 0.08%) private genes (Fig. 1C; Fig. S2 C-D; Table S3).
In total, there are 32,052 genes in the core/near-core portion of the pan-genome and 71,486
genes in the dispensable/private portion. The majority of core/near-core genes are syntenic to
sorghum (57.8%) whereas this is rarely the case for dispensable/private genes (1.8% syntenic).
Similarly, the core genes are generally from higher phylostrata levels (i.e. Viridiplanteae and
Poaceae), while those in the near-core and dispensable sets either share orthologs only with
closely related species or are maize-specific (Fig. S2 F). A total of 16,267 pan-genes had a

putative tandem duplicate in at least one genome, of which 6,556 were found in a single
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genome. On a per gene basis in genomes with at least one tandem duplicate the average copy
number is 2.20 (SE = 0.01) (Fig. S2 E).

Partial tetraploidy and tempo of fractionation

The maize ancestor underwent a whole-genome duplication (WGD) allopolyploidy event
5-20 MYA ((23, 24), Fig. 2A). Evidence for WGD is found in the existence of two separate
genomes that are broken and rearranged, yet still show clear synteny to sorghum (23, 25).
Many duplicated genes have since undergone loss, or fractionation, reducing maize to its
current diploid state (25, 26). Further, fractionation is biased towards one homoeologous
genome (M2, more fractionated) over the other (M1, less fractionated) (25). The M1 and M2
subgenomes are composed almost exclusively of core (87.23%) and near-core (6.19%) pan-
genes (Figs. 1C, 2A).

Given the ancient timeframe of the WGD in maize and the rapid tempo of fractionation
observed in other species (27, 28), little variation in homoeolog retention is expected at the
species level. In fact, prior work in temperate maize has suggested that most fractionation
occurred long before maize was domesticated (6, 29). However, this diverse set of genomes
allows for a more complete characterization of fractionation within the coalescence of the
species. Since fractionation can occur at the level of small deletions (26, 30), we evaluated both
partial and complete homoeolog loss beginning with a conservative set of 16,195 maize pan-
orthologs. We determined that 7,043 were single-copy orthologs, where the homoeologous
gene was likely deleted prior to maize speciation (Fig. 2A). Fractionation bias was substantial in
this set, with 70% of single-copy orthologs retained in M1 and 30% retained in M2. In addition,
we identified 4,576 homoeologous pairs (Fig. 2A) of which 2,155 had the same exon structure
of the sorghum ortholog in both homoeologs. In 1,281 pairs, at least one copy of the gene
differed from its sorghum ortholog, but did not vary among NAM lines, likely representing
fractionation that pre-dated Zea mays. These ancient deletions were also biased toward M2, but
much less substantially (9.4% deletion excess in M2), potentially reflecting different exon
structure in the paleopolyploid progenitors. Another 1,140 pairs varied across the genomes in
their pattern of exon retention, segregating for deletions or structural differences in at least one
copy of the gene. This segregating set was manually curated (Dataset S1) to remove loci where
exons or flanking sequence could not be confidently identified (Fig. 2A), resulting in a curated
set of 494 homoeolog pairs segregating for fractionation, which represents more than 10% of

the homoeologous pairs present in the pan-genome. Of these, 281 M2 homoeologs had exon
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loss compared to 236 M1 homoeologs, a 19% difference (p < 0.05, ¥ test), suggesting ongoing
biased fractionation.

Coalescent theory predicts that segregating mutations, like the fractionation deletions
identified, should have arisen within the last 4N, generations. If the effective population size in
the maize progenitor teosinte is a reasonable upward bound for maize (N, = 150,000; (37)), we
can infer that the majority of segregating neutral variation arose within the last 600,000
generations. Barring pervasive balancing selection for homoeologs, these data indicate that the
majority of segregating fractionation substantially post-dates the last whole-genome duplication.
Coalescent theory also predicts that rare deletions should be much younger than those
segregating at intermediate frequency. We constructed the unfolded site frequency spectrum
(SFS) of fractionation deletions in our curated set of homoeolog pairs and compared this to the
unfolded SFS of non-coding SNPs using sorghum to define the ancestral state (Fig. 2B). The
data reveal a similar frequency distribution in deletions and SNPs with a preponderance of rare
variants in both, suggesting that a subset of fractionation may be quite young, potentially
continuing in modern-day populations of maize. We also evaluated patterns of co-exon-retention
in non-stiff-stalk temperate maize, tropical maize, and flint-derived maize, and observed clear
evidence of population-specific fractionation (Fig. 2C). This surprising variation in homoeolog
retention at the population level may reflect relaxed constraint following domestication and
migration of maize to temperate climates.

Analysis of gene ontology terms revealed that fully retained homoeologous loci were
enriched (p < 1x10°%) for DNA-binding, nucleic acid binding, phosphatase regulation, and
transcription factor activity (consistent with prior results; (32), whereas segregating fractionated
loci were enriched (p < 1x10°%°) for transporter and catalytic activity (Fig. S3, Dataset S1).
These results support the hypothesis that fractionated loci have distinct functions from those
that are retained, presumably due to differential selection on multi-protein pathways or

metabolic networks (32, 33).

The repetitive fraction of the pan-genome

Transposable elements (TEs) were annotated in each assembly using both structural
features and sequence homology (34). Individual TE libraries from each inbred were then
combined to form a pan-genome library, which was used to identify TE sequences missed by
individual libraries. The annotations reveal that DNA transposons and LTR retrotransposons
comprise 8.5% and 74.4% of the genome, respectively (Table S4, Fig. S4). A total of 27,228 TE
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families were included in the pan-genome TE library, of which 59.7% were present in all 26
NAM founders and 2.5% were unique to one genome (Fig. S5). The average percentage of
intact and fragmented TEs were 30.5% and 69.5% (SE = 0.06%), respectively. As reported
previously, Gypsy LTR retrotransposon families are more abundant in pericentromeric regions,
while Copia LTR retrotransposons are more abundant in the gene-dense chromosome arms
(Fig. S6) (35). Tropical lines have significantly more Gypsy elements than temperate lines (p =
0.002, t-test), with mean Gypsy content of 1,018 Mbp and 988 Mbp, respectively (Table S4, Fig.
S4). This may reflect increasing constraint on Gypsy proliferation in temperate lines that have,
on average, smaller genomes (Table 1).

In some maize lines, over 15% of the genome is composed of tandem repeat arrays that
include the centromere repeat CentC, the two knob repeats knob180 and TR-1, subtelomere,
and telomere repeats (36, 37). Repeats of this type remain a major impediment to assembly. A
mean of 60% of CentC, 70% of the 4-12-1 subtelomeric sequence (38)), 28.9% of TR-1, 1% of
knob180, and 0.09% of rDNA repeat units were incorporated in the final assemblies (Table 1).

A total of 110 (of 260) functional centromeres identified by CENH3 ChlP-seq (39, 40)
were fully assembled, and of these 88 are gapless ((Fig. S7A and (40)). Chromosomes with
very long CentC arrays (such as chromosomes 1, 6, and 7) often have assembly gaps and the
precise location of the centromere could not be determined. However many centromeres either
have fully assembled small CentC arrays or the functional centromeres are located to one side
of the CentC tracts in regions dominated by retrotransposons (Fig. 3A). By projecting all
centromere locations onto B73, we were able to identify twelve centromere movement events
(three on chr5 and chr9, and two on chr3, chr8 and chr10), clarifying and extending prior
evidence for centromere shifting (39) (Fig. 3B, Fig. S7B). The variation in CentC abundance
and positional polymorphism made it possible to gaplessly assemble at least two variants of all
ten centromeres (Fig. S7A).

Both knob180 and TR-1 arrays are subject to meiotic drive and accumulate when a
chromosome variant known as Abnormal chromosome 10 (Ab10) is present (37, 41). Although
Ab10 is absent from modern inbreds, its legacy remains in the form of many large knobs. The
majority of knob180 and TR-1 repeat arrays were identified in mid-arm positions (81.9%) where
meiotic drive is most effective. Long knob180 and TR-1 repeat arrays can occur separately, but
are more frequently intermingled in fragmented arrays along with transposons (Fig. 3A, Fig. S8)
(42). Analysis of classical (cytologically visible) knobs on chromosome 1S, 2S, 2L, 3L, 4L, 5L,
6L, 7L, 8L, and 9S revealed that their locations are syntenic and that several are composed of a

series of disjointed smaller knobs (Fig. 3A, Fig. 89). In some lines, knobs are not visible
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cytologically but can still be detected as smaller arrays at the sequence level; however, this is
not always the case, as many show strict presence-absence variation among the NAM founder
inbreds.

Tandem repeat arrays are also commonly found at the ends of chromosome arms
(Table S5). Among the 520 chromosome ends, 57.9% contained knob180 repeats and 30.5%
contained subtelomere repeats. At least 65.6% of the ends were fully assembled as indicated by

the presence of telomere sequences.

Structural variation and impact on phenotype

Comparative analyses among the NAM genotypes through mapping of long-reads to
B73 revealed a cumulative total of 791,101 structural variants (SVs) greater than 100bp in size.
Tropical lines, which are the most divergent NAM genomes from B73, include a substantially
higher number of SVs than temperate lines (mean = 32,976 versus 29,742; p = 0.00013)
(Tables S6, S7). Structural variants are more common on chromosome arms where
recombination is highest (Fig. $10), similar to SNPs and other forms of genetic variation (43).
Almost half (49.6%) of SVs were <5 kbp in size, with 25.7% being less than 500bp. Across all
size classes SVs are skewed toward rare variants (Fig. $11). Several large SVs were found
segregating within the 26 NAM genomes (Fig. 3B), including 35 distinct inversion
polymorphisms and 5 insertion-deletion polymorphisms >1 Mbp. For example, a 14.6 Mbp
inversion on chromosome 5 in the CML52 and CML322 lines, which was previously
hypothesized based on suppressed recombination in the NAM RILs (717), is confirmed here
based on assembly. Additionally, there is a 1.9 Mbp deletion with seven genes on chromosome
2 in the MS71 inbred, and a 1.8 Mbp deletion with two genes on chromosome 8 found in eight
lines. Our data also capture a very large reciprocal translocation (involving >47 Mbp of DNA)
between the short arms of chromosomes 9 and 10 in Oh7B that had been previously detected in
cytological studies (38) (Fig. 3B).

The high proportion of rare SVs in maize suggests these may be a particularly
deleterious class of variants, as observed in other species (44, 45). Indels and inversions occur
in regions that have 49.8% fewer genic base pairs than the genomic background. Furthermore,
SVs are 17% less likely to be found in conserved regions than SNPs (odds ratios of 0.27 and
0.58 for SVs and SNPs, respectively, Fisher’'s Exact Test, p < 0.001). Approximate Bayesian

computation modeling revealed that selection against SVs is at least as strong as that against
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nonsynonymous substitutions (Fig. S12; See Supplemental Methods). These results suggest
that, when they occur, SVs are particularly consequential and are likely relevant to fitness.

To estimate the phenotypic impact of SVs, we assessed the genetic basis of 36 complex
traits (73) using 71,196 filtered SVs in 4,027 recombinant inbred lines derived from the NAM
founder inbreds (17) (Fig. S13A). The analysis revealed that SVs explain a high percentage of
phenotypic variance for disease traits (60.10% ~ 61.75%) and less for agronomic/morphological
traits (20.04% ~ 61.04%) and metabolic traits (4.79% ~ 26.78%). Disease traits are often
conferred by one or a few genes, whereas metabolic traits may be more sensitive to the
environment and involve epistatic interactions that would not have been detected by our
approach (46). Much of the phenotypic variation was also explained by SNPs, which were much
more numerous (288-fold more) relative to our conservative set of SVs (Fig. S13A). When the
SNP and SV data were integrated into one linear mixed model, the combined markers only
slightly surpassed values from SNPs, consistent with the fact that most SVs are in high linkage
disequilibrium with SNPs (Fig. S13A). We also carried out genome-wide association analyses
(GWAS) to identify specific SVs contributing to phenotypic variation for the same suite of traits
(Fig. S13B-G). Among the detected GWAS signals, 93.05% overlapped with those identified
with SNPs and 6.95% were unique to SVs (no significant SNPs detected within 5 Mbp of
significant SVs). The most significant association between a SV and a trait not identified using
SNP markers was a QTL for northern leaf blight (NLB) on chromosome 10 (Fig. S13F). This SV
is within a gene encoding a thylakoid lumenal protein; such proteins could be linked to plant
immunity through the regulation of cell death during viral infection (47).

Disease resistance in plants is frequently associated with SV in the form of tandem
arrays of resistance genes. Complex arrays of resistance genes are retained, potentially
through birth-death dynamics in an evolutionary arms race with pathogens, or through balancing
selection for the maintenance of diverse plant defenses (48). Nucleotide-binding, leucine-rich-
repeat (NLR) proteins provide a common type of resistance. Our data reveal that there are
fewer NLR genes in maize than other Poaceae (Fig. S14) and that most NAM lines have lost
the same clades of NLRs as sorghum (Fig. $15). Only one line (CML277) retains the MIC1 NLR
clade, which is particularly fast-evolving in Poaceae (49). Nevertheless, there is clear NLR
variation among the NAM lines (Fig. $S16), and tropical genomes contain a significantly higher
number of NLR genes than temperate genomes (p=0.006), suggesting ongoing co-evolution
with pathogens, particularly where disease pressure is high.

The annotated NLR genes were significantly enriched relative to random samples of

genes for overlap with SVs (boot-strap permutation test, p<0.001). An extreme example is found
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at the rp1 (resistance to Puccinia sorghi1) locus on the short arm of chromosome 10, which is
known to be highly variable (60). We observed exceptional diversity in the NAM lines with as
few as 4 rp1 copies in P39, and as many as 30 in M37W (Table S8). However, due to its
repetitive nature, only 18 NAM lines have gapless assemblies of the rp7 locus.

SVs linked to transposons have been shown, through the modulation of gene
expression, to underlie flowering-time adaptation in maize during tropical-to-temperate migration
(51, 562). Our SV and TE-annotation pipelines identified the adaptive CACTA-like insertion
previously reported upstream of the flowering-time locus ZmCCT10 (52). We also surveyed an
additional 173 genes linked to flowering-time (53, 54) and discovered three genes (GL15,
ZCN10, and Dof21) with TE-derived SVs <5 kbp upstream of their transcription start sites.
These SVs distinguish temperate from tropical lines (t < -2.346, p < 0.0358) (Fig. S17) and

show significant correlation (F > 8.658, p < 0.001) with expression levels.

Discovery of candidate cis-regulatory elements through DNA methylation

Based on sequence alone, it can be difficult to distinguish functional regulatory
sequences from the multitude of non-functional and potentially deleterious genetic elements in
the intergenic spaces. The problem is complicated by the fact that regulatory regions can be
separated from their promoters by tens or hundreds of kilobases (5, 565). One way to identify
functional regions is to score for unmethylated DNA, which provides both a tissue-independent
indicator of gene regulatory elements and evidence that annotated genes are active (5, 55, 56).
To incorporate DNA methylation to the NAM genomes resource, we sequenced enzymatic
methyl-seq (EM-seq) libraries from each line and identified methylated bases in three sequence
contexts, CG, CHG, and CHH (where H = A, T, or C). The results are consistent across genes
and transposons, demonstrating the quality of the libraries (Figs. $18, S19). There is minor
variation in total methylation across inbreds, with CML247 being noteworthy for uniformly lower
CG methylation in several tissues (Fig. $20) pointing to the existence of a genetic variant that
compromises mCG methylation in this line.

Each of the three methylation contexts reveal information on the locations of repeats,
genes and regulatory elements. mCHH levels are generally low in maize except in
heterochromatin borders, whereas mCHG is abundant in repetitive regions and depleted from
regulatory elements and exons (Fig. 4) (57). mCG is also depleted from regulatory elements but
can be abundant in exons, especially of broadly expressed genes (58). Thus, to identify

unmethylated regions (UMRs) corresponding to both regulatory elements and gene bodies, we

10
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defined UMRs using a method that takes into account mCHG and mCG but does not exclude
high mCG-only regions. Comparison of the 26 methylomes revealed uniformity in number and
length of UMRs, averaging about 180 Mbp in total length in each genome (Figs. S$21, S22). To
confirm the accuracy of the UMR data, we also identified accessible chromatin regions (ACRs)
using ATAC-seq for each inbred. We expect chromatin to be accessible mainly in the subset of
genes expressed in the tissue sampled (primarily leaves) and to show a high level of
concordance with UMRs. The data reveal that at least 98% of genic ACRs overlap with UMRs in
each genome (Fig. S23, S24). For non-genic ACRs, the percent overlap was lower, but typically
greater than 90%.

To assess methylation diversity, we mapped UMRs from all inbreds to the B73 genome.
The data reveal that ~95% of genic UMRs identified in one methylome overlap with a UMR in at
least one other genome in pairwise comparisons (Fig. $25). UMR polymorphism is higher in the
intergenic space, particularly among UMRs greater than 5 kbp from genes, where typically
~75% of UMRs identified in one methylome overlap with a UMR identified in any other (Fig,
$25). Even when the UMR sequence is conserved, its position relative to the closest gene may
vary dramatically among inbreds. This is exemplified by the Miniature Seed1 gene where a
UMR proximal to the promoter in Mo18W is displaced nearly 14 kbp upstream in B73 by a
single Huck element (Gypsy LTR superfamily) (Fig. 4). The Huck insertion is present in 23 of
the 26 genomes, and in two of these (Oh43 and CML322), additional nested TE insertions
increased the distance between the gene and the UMR to 27 kbp. Although the overlap of
UMRs in pairs of lines is generally consistent with genetic distance across NAM lines (Fig. $26),
UMRs from the inbred Tzi8 were not substantially shared with other tropical genomes. Tzi8 also
has longer ACRs (Fig. S24) despite grouping well with other tropical lines in terms of gene
expression patterns.

Variation in DNA methylation has been associated with adaptive traits in maize (59),
most likely through effects on gene expression. To estimate how well UMRs predict
transcriptional competency in these genomes, we identified a conservative subset of UMRs
overlapping genes that were unmethylated in B73 but methylated in at least one other
methylome. These differentially methylated regions were strongly correlated with gene
expression in B73 and gene silencing in the other genomes (Fig. 4, Fig. $27). We further
evaluated the enrichment of significant GWAS SNPs across 36 traits in UMRs. Based on
genome-wide estimates, UMRs show 2.50- to 3.26-fold enrichment across traits for significant

associations. Roughly 18% of SNPs identified by GWAS lie outside of genic regions but within
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UMRSs (Table S9), consistent with the view that UMRs can be used to identify regulatory regions
with important roles in determining phenotype (5, 55, 56).

Summary

Our analysis of 26 genomes has uncovered previously unknown variation in both the
genic and repetitive fractions of the pan-genome and provided new evidence of genome
reorganization both before and after domestication. The available data will have broad utility for
genetic and genomic studies and facilitate rapid associations to phenotyping information from
the NAM lines. More generally, these new resources should motivate a shift away from the
single reference mindset to a multi-reference view where any one of 26 inbreds, each with
different experimental and agronomic advantages, can be deployed for the purposes of basic
discovery and crop improvement. All data including annotations for genes, transposons,
repeats, centromeres, UMRs, and ACRs are available with browser support at the maize

community database, www.MaizeGDB.orqg.
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MAIN PAPER FIGURES

Table 1: Quality metrics for genome assemblies and gene model annotations. Darker shading
indicates higher quality.

Assembly Size (Mb)
Contig NSO (Mb)
Scaffold N50 (Mb)

112 21.34 11.34 9.553 1143

Pseudomolecule % N 0.936 1.207

BUSCO (% complete) 95.83 95.63 6 95.63 95.76 95.90 95.56

LTR Assembly Index (LAI) <

CentC (% assembled) g . 44.54 g 55.3 .. > 54.9 € g 5 43.82

Knob180 (% assembled) 5651 18.63 824 896 7.89 779 434 g - X 221 10.57 . - - 473 3.83 344 g 139 561
TR-1 (% assembled) 23.01 2513 8.26 X : .. . 3.17  8.45 . . 4.08 11.42 10.76 . 126 529
rDNA arrays (% assembled)  0.352 9.4 5 4 E .. . 8 B . 4 . 7.33

Subtelomere (% assembled) 1.963 7

Gene Length (average) 4163

Genic Space Annotated (%)  8.03
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Figure 1. The gene space in the NAM genomes. A) Pan-genes categorized by annotation
method and phylostrata. Genes annotated with evidence have mRNA support whereas ab initio
genes are predicted based on DNA sequence alone. Genes within progressing phylostrata -
species Zea mays (maize), tribe Andropogoneae, family Poaceae, kingdom Viridiplantae - are
more conserved. B) The number of pan-genes added with each additional genome assembly.
The error bars reflect different outcomes when the order of genomes was changed (the data
were bootstrapped 1000 times). C) Frequency of pan-genes in the NAM genomes. The lower
graph shows the number of genes present in only one genome (private), present in 2-23
genomes (dispensable), present in 24 or 25 genomes (near-core), and present in all 26
genomes (core). Grey shades indicate the proportion present in syntenic (M1 and M2 genomes)
and non-syntenic positions. For B and C, tandem duplicates were considered as a single gene.
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Figure 2. The tempo of fractionation in maize. A) Schematic showing how genes were
categorized. 16,195 conservatively chosen orthologs were subdivided into classes representing
retained pairs, ancient fractionation, and recent fractionation. B) Unfolded site frequency
spectrum (SFS) of segregating exon loss and non-coding SNPs (genic and non-genic) using
sorghum to define the ancestral state. C) Heatmap of the number of co-retained exons between
any two NAM lines. Lines with mixed ancestry (M37W, Mo18W, Tx303) are excluded. Colors
indicate the Z-score (the difference measured in standard deviations between a single pairwise
comparison and all others in the row).
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Figure 3. Structural variation in the NAM founders. A) Pairwise alignments between Ki11, B73,
[114H on chromosome 8. Grey links represent syntenic aligned regions; gaps of unknown size
(scaffold gaps) are marked by dashed lines. B) Large (>100 kbp) structural variants,
centromeres, and knobs across the NAM lines versus the B73 reference. The subset of SVs
larger than 1 Mbp were manually curated, and only those containing genes are represented.
Features 1-5 highlight major SVs: 1) Multiple centromere movement events; 2) A major
inversion hypothesized to suppress recombination; 3) A large deletion in the Ms71 inbred; 4)
Knob polymorphism; 5) Reciprocal translocation between chromosome 9 and 10 in the Oh7B
inbred (both segments placed in their standard positions for display).
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Figure 4. UMR variation across the NAM founders. A) Annotation of the Miniature seed1 gene
in the Mo17W inbred. An image from MaizeGDB browser shows gene, TE, and UMR tracks. TE
tracks are color-coded by superfamily: green/grey = LTR, red = TIR, blue = LINE. The grey
vertical lines show 2.5 kbp intervals. B) Annotation and underlying methylation data for
Miniature seed1 in the B73 inbred. The insertion of a Gypsy element moved part of the proximal
UMR to a position 14 kbp upstream from the transcription start site (TSS). Methylation tracks
indicate base-pair level methylation values from 0 to 100%. Asterisks indicate gaps in coverage,
which are visible in separate tracks not shown here. C) Relationship between methylation and
gene expression. UMRs were mapped to B73 to identify UMRs that overlap with TSS. The Y
axis indicates the ratio of transcripts per million (TPM, compared to B73) when the region is
methylated (red) or unmethylated (teal).
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SUPPLEMENTARY DATA
Materials and Methods
Data Availability

Browsers: The NAM assemblies and gene models can be accessed through their

genome assembly pages https://maizegdb.org/NAM project, which provide the genome

browser metadata and links to downloads for each assembly.
Downloads: Downloads can be accessed directly from the MaizeGDB download site

(https://maizegdb.org/download). NAM gene models can be downloaded, viewed on the

genome browsers, and searched via the gene center (https://maizegdb.org/gene_center/gene).

BLAST targets for the NAM assemblies and their gene models are available for the MaizeGDB
BLAST tool (https://blast.maizegdb.org).

Raw sequence data: Raw data used for all the assemblies including the PacBio Sequel

reads, lllumina short reads, BioNano optical maps are available through ENA BioProject IDs
PRJEB31061 and PRJEB32225. RNA-Seq reads for various tissues can be found through ENA
ArrayExpress IDs E-MTAB-8633 and E-MTAB-8628 and EM-Seq reads are available through
ENA ArrayExpress under ID E-MTAB-10028.

Other data: Other files, tables and supplemental data can be found in CyVerse
/iplant/home/shared/NAM/NAM_genome_and_annotation_Jan2021_release. Links to the NLR
trees can be found at https://itol.embl.de/shared/xCJbl9ndshEK.

Scripts: Scripts used to generate and analyze data are at
https://github.com/HuffordLab/NAM-genomes.
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Plant Material

Inbred NAM lines were obtained from GRIN Global (Table S$1) and tissue collected as
previously reported (60). Briefly, original accessions were selfed for one generation at Curtiss
Farm at lowa State University. Using single-seed-descent ears derived from this propagation,
144 seedlings were greenhouse grown to V2 vegetative growth stage at lowa State University.
After 48hr etiolation, 30 grams young leaf tissue was harvested, flash frozen, and submitted for
CTAB, or nuclei-based high molecular weight DNA isolation for downstream analysis.
Remaining seed from our single-seed-descent ears has been deposited and is publicly available
through GRIN Global (Table S1).

DNA preparation for sequencing

High molecular weight DNA was isolated using either a standard CTAB protocol or a
modified version in which nuclei were first isolated, thereby removing the plastid and
mitochondrial genomes (Table S1). The CTAB procedure was a slightly modified version of the
original method (67). Nuclei isolations were based on the method of Luo and Wing (62), with
collected and washed nuclei then being resuspended in CTAB buffer and isolations completed

following (67).

PacBio Sequencing

Sequencing libraries were constructed following PacBio’s template prep protocols for the
Express Template Prep Kit 2.0. For all lines except Ki11, NC350, and B73, samples were
sequenced using Sequel binding and sequencing chemistry v2.1. Ki11, NC350, and B73 were

sequenced using Sequel binding and sequencing chemistry v3.0.

lllumina Sequencing

The same DNA used for PacBio sequencing was used for lllumina sequencing. PCR-
free DNA sequencing libraries were prepared using the Kapa HyperPrep PCR-free kit
(#KK8505). The sequencing libraries were checked for quality on an Agilent Fragment Analyzer
and the final concentrations estimated using gqPCR. PE150 libraries were sequenced on the

lllumina NextSeq 500 using the 300 cycles high output kit.
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Optical Map Generation

DNA was extracted for optical map construction using the Bionano Prep™ Plant Tissue
DNA Isolation Kit and a slightly modified protocol. For each inbred, approximately 0.5 g of
etiolated leaf tissue was harvested from young seedlings germinated under soil-free conditions
and grown in the dark for approximately 2 weeks. Leaves were treated with a 2% formaldehyde
fixing solution, washed, cut into small pieces, and homogenized with a Qiagen Tissueruptor
probe. Free nuclei were then concentrated through centrifugation at 2000 x g, washed, isolated
by gradient centrifugation, and embedded in a low-melting-point agarose plug. The plug was
treated with proteinase K and RNase A and washed four times in Bionano Wash Buffer and five
times in TE buffer. Finally, purified, ultra-high-molecular-weight nuclear DNA (uUHMW nDNA)
was recovered by melting the plug, digesting with agarase and subjecting the sample to drop
dialysis against TE.

Labeling was performed using the DLS Kit (Bionano Genomics Cat.80005) following
manufacturer’'s recommendations with slight modification. In total, 1 ug uUHMW nDNA was
incubated along with DLE-1 Enzyme, DL-Green and DLE-1 Buffer for 2:20 h at 37 °C, followed
by 20 min at 70 °C. Subsequently, a second proteinase K digestion and cleanup of
unincorporated DL-Green label was performed, and labeled DNA was combined with Flow
Buffer, DTT, and incubated overnight at 4 °C. DNA was stained and quantified by adding
Bionano DNA Stain to a final concentration of 1 microliter per 0.1 microgram of DNA. The
labeled sample was then loaded onto a Bionano chip flow cell where molecules were separated,
imaged, and digitized in the Saphyr System according to the manufacturer’'s recommendations

(https://bionanogenomics.com/support-page/saphyr-system/). Data visualization, processing,

and DLS map assembly were conducted using the Bionano Genomics software Access, Solve

and Tools.

Genome Assembly and Hybrid Scaffolding

Raw illumina reads were first used to verify homozygosity of inbreds by comparing
percent heterozygosity of SNPs using BWA-MEM (63) and GATK (64) to publicly available
HapMap2 maize SNP data (43). Loci that were monomorphic across lines were removed for this
analysis. The data were also subsampled to 10,000 to 50,000 SNPs in order to generate a

phylogenetic tree using SNPhylo (65) for the purpose of verifying line identity.
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PacBio subreads were error-corrected with Falcon (66) using the longest 50x coverage
and an average read correction rate set to 75% (-e 0.75) with local alignments at a minimum of
3000 bp (-1 3000). The usage of -l 3000 instead of the default -I 2500 performs better for highly
repetitive genome species such as maize. We required a minimum of two reads and a
maximum of 200 reads for error corrections (--min_cov 2 --max_n_read 200). For sequence
assembly, the exact matching k-mers between two reads was set to 24 bp (-k 24) with a read
correction rate of 95% (-e 0.95) and local alignments of at least 1000 bp (-| 1000). Corrected
reads ranged from 32x-56x coverage and were characterized by N50s ranging from 16.2 — 23.2
kbp. These reads were trimmed and assembled with Canu (v1.8) (67) with the following
modification of default parameters: correctedErrorRate=0.065 corMhapSensitivity=normal
oviMerThreshold=500 utgOviIMerThreshold=150. This version of Canu fixes a bug in previous
versions that generated truncations in large contigs during the consensus stage. The resulting
contigs were filtered to a minimum contig length of 30 kbp.

Sequence polishing of contigs was conducted using both PacBio and Illlumina data sets.
First, raw PacBio reads were aligned to contigs using the software ppmm2 (a PacBio wrapper
for minimap2 (68)). The PacBio consensus algorithm tool Arrow was then run under default

parameters (https://github.com/PacificBiosciences/pbbioconda). PacBio polished contigs were

then polished with either PE 150 bp lllumina reads (the majority of samples) or 10X Chromium
linked reads (CML52 and I114H). The PE lllumina reads ranged from 26x-73x depth and were
aligned to contigs using minimap2. Subsequently, the assembly tool Pilon v1.22

(https://github.com/broadinstitute/pilon) was used to correct individual base errors and small

indels under the following modifications to default parameters: --fix bases --minmq 30 --
mindepth 10. Chromium linked reads were aligned to contigs using Longranger v2.2.2

(https://support.10xgenomics.com/genome-exome/software/downloads/latest?) with Pilon run as

described above.

The PacBio sequence assembly was merged with the optical map using the hybrid
scaffolding module of BionanoSolve (v3.4.0) and Bionano Access (v1.3.0). Default parameters
from optArguments_nonhaplotype_noES_DLE1_saphyr.xml were used. At this stage three
forms of gaps were generated: 1) N gaps of various sizes (not 100Ns or 13Ns). These are rough
estimates of missing sequence where the Bionano map was contiguous but there were no
PacBio contigs that matched. Sizes are calibrated by the Bionano software and are generally
accurate within 500 bp. 2) 100N gaps. These represent gaps of unknown size between
scaffolds. They generally occur in centromeres and knobs. 3) 13N gaps. These are assembly

artifacts associated with repetitive regions. They occur when two contigs are aligned to the
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same optical map and they overlap on the ends, indicating that they are independently
assembled parts of a single contiguous region (however due to the repetitiveness or residual
heterozygosity, were not assembled together at the sequence level). Bionano software does not
remove this overlap and instead joins the contigs end-to-end and marks the join by 13Ns. This
creates a software-induced sequence duplication of several hundred bp to several kb. For the
B73 assembly only (version 5.0) the contig overlaps marked by 13Ns were hand curated and
removed.

We emphasize that any segment of a genome containing a 13N gap, when aligned to
any other genome, will show apparent structural variation that does not reflect a biological
difference, but instead reflects an assembly artifact associated with contig overlap. These can

be identified by scanning the sequence for 13N gaps.

Pseudomolecule Construction

Pseudomolecules were constructed from the hybrid scaffolds using ALLMAPS (v0.8.12;
(69) as described in our previous assembly of the B73-Ab10 line (42). Briefly, we used pan-
genome anchor (4) and Golden Gate (77) markers for all NAM lines and the IBM (Intermated
B73 x Mo17) genetic map (70) in the case of B73 for pseudomolecule construction. Pan-
genome anchor markers were downloaded from the CyVerse Data Commons (77) and
processed to obtain coordinates 50 bp upstream and downstream of the marker position, and
sequences from the B73 V3 assembly were then extracted. These sequences were mapped to
an indexed NAM assembly using HiSat2 (v2.1.0) (72, 73) with fine-tuning to map short
sequences reliably. By disabling splicing (--no-spliced-alignment), forcing global alignment (--
end-to-end), and including high read, reference gap open, and extension penalties (--rdg
10000,10000 and --rfg 10000,10000), full-length mapping of marker sequence was achieved.
Only reads with mapping quality higher than 30 and tag XM:0 (unique mapping) were retained
as the final set of mapped marker sequences. These markers were then combined with the
metadata to generate a pan-genome marker input file for ALLMAPS (predicted distance
information with their mapped position) in CSV format. For preparing the IBM and the Golden
Gate genetic maps, the marker information was downloaded from MaizeGDB (IBM:

https://www.maizegdb.org/complete map?id=887740; GoldenGate:

https://www.maizegdb.org/data_center/map?id=1160762) and processed to yield markers in

fasta format and metadata in a tsv file. Methods for mapping and processing these markers

were identical to pan-genome anchor markers.
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ALLMAPS was run using CSV files as inputs (pangenome.csv and goldengate.csv) and
configured to use scaffolds with more than 20 uniquely mapped markers (--mincount=20). Gap
inserts between the scaffolds was set to 100 (--gapsize-100). Pseudomolecules were finalized
after inspecting the marker placement plot and the scaffold directions. Any small scaffolds
nested within the large scaffolds were identified as heterozygous and were excluded from the
final pseudomolecule. These scaffolds were named with the prefix “alt-scaf” and were saved as
unplaced scaffolds. Synteny dotplots were generated using the scaffolds as well as
pseudomolecule assemblies against the B73 genome by following the ISUgenomics

Bioinformatics Workbook (https://bioinformaticsworkbook.org/data\Wrangling/genome-

dotplots.html). Dot plots helped confirm the placement and orientation of scaffolds. Briefly, the
repeats were masked using RepeatMasker (v4.0.9) (74) and the Maize TE Consortium (MTEC)
curated library (https://github.com/oushujun/MTEC) (75). RepeatMasker was configured to use

the NCBI engine (rmblastn) (76) with a quick search option (-q) and GFF as a preferred output.
The repeat-masked genomes were then aligned using minimap2 (68) (v2.2) and set to break at
5% divergence (-x asm5). The paf files were filtered to eliminate alignments less than 1 kbp and

dotplots were generated using the R package dotPlotly (https://github.com/tpoorten/dotPlotly).

The AGP construction method along with the scripts are detailed in the “agp-generation” section

of the companion GitHub site.

Genome Quality Assessment

To assess the contiguity and gene space completeness of the NAM genome
assemblies, different quality metrics (Table S2) were calculated using the GenomeQC tool (77).
Embryophyta odb9 dataset (n = 1,440) and Augustus species ‘maize’ were provided as the
input parameters to calculate the BUSCO metrics.

The LTR Assembly Index (LAI) (78) was used to assess the contiguity of TE assembly.
First, intact LTR retrotransposon (LTR-RT) candidates of each genome (pseudomolecules only)
were identified using LTRharvest (v1.6.1) (78) and LTR_FINDER_parallel (v1.1) (79), then
filtered by LTR_retriever (v2.9.0) (80) with default parameters. The LAl program (beta3.2) was
used to calculate LAl values of each genome based on a total LTR content of 76.34%, an LTR
identity of 94.854% (-totLTR 76.34 -iden 94.854), and the intact LTR-RTs identified from the
genome. The LAl was comparable among NAM lines with an average of 28 (SD = 0.23), which

is considered “gold” quality (78). The percentage of structurally annotated TEs was lower than
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previously reported (27) due to more effective filtering of false positives (80) and the fact that

only intact TEs were structurally annotated in this study.

RNA-seq

Total RNA was extracted using the Qiagen RNeasy plant mini kit from ten tissues. These
were (1) primary root and (2) coleoptile at six days after planting, (3) base of the 10" leaf, (4)
middle of the 10" leaf, (5) tip of the 10™ leaf at the Vegetative 11 (V11) growth stage, (6) meiotic
tassel and (7) immature ear at the V18 growth stage, (8) anthers at the Reproductive 1 (R1)
growth stage, (9) endosperm and (10) embryo at 16 days after pollination. With a few
exceptions, for each tissue in each NAM founder, mMRNA was sequenced from two biological
replicates that were composed of mMRNA from three individual plants. In the case of endosperm
and embryo, 50 kernels per plant were used (for a total of 150 per biological replicate). For
tissues 1-5, plants were grown in University of Minnesota greenhouses in Metro-Mix300 (Sun
Gro Horticulture) at 27°C/24°C day/night and 16h/8h light/dark. For tissues 6-10, plants were
grown outdoors at the Minnesota Agricultural Experiment Station in Saint Paul, MN with 30-inch
row spacing at ~52,000 plants per hectare.

For each sample, total RNA was assayed by Bioanalyzer to determine the quantity and
integrity of the sample. Concentrations were normalized in 25uL of nuclease-free water and
sequencing libraries prepared using KAPA’s Stranded mRNA-seq kit (#KK4821). The mRNA
was enriched using oligo-dT beads, fragmented, and converted to double stranded cDNA using
random hexamer priming and amplification. Libraries were pooled and sequenced on NextSeq

500 instruments using the PE75 protocol.

Gene Model Annotation

The 26 NAM genomes were annotated using a hybrid evidence and ab initio based gene
prediction pipeline (87). Evidence-based predictions were directly inferred from the assembled
transcripts, which were generated using five different genome-guided transcript assembly
programs, Trinity (v2.6.6) (76, 82), StringTie (v1.3.4a) (83), Strawberry (v1.1.1) (84), Cufflinks
(v2.2.1) (83, 85) and Class2 (83, 85, 86)) and processed using Mikado (v1.2.4) (87) to pick the
optimal set of transcripts for each locus. To generate assembled transcripts, quality inspected
RNA-seq reads from each library were mapped to their respective NAM genomes using STAR

(v2.5.3a) (88) with an iterative 2-pass mapping approach in which splice junctions generated
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from the first round were used to refine alignments in the subsequent round. STAR was
configured to output SAM format (with options --outSAMattributes All, --outSAMmapqUnique 10,
--outFilterMismatchNmax 0) to ensure downstream analysis compatibility. Mapped reads from
each library were merged, sorted, and indexed using SAMTools (v1.9)(89) to generate input for
transcript assembly programs. All programs were run with default options with the exception of
the minimum transcript length setting (when allowed), which was set to 100 bp (Trinity using --
min_contig_length 100, StringTie using -m 100 and Strawberry using -t 100) and enabling of
RNAseq strandedness (Trinity using -SS_lib_type FR, Cufflinks using --library-type fr-
firststrand), when available. Maximum intron size was also set to 10000 (--
genome_guided_max_intron 10000) in Trinity. While most of the assembly programs generated
a GFF3 as the final output, Trinity provided fasta format transcripts. These transcripts were
mapped back to the gmap (v2019-05-12) indexed genome to generate a GFF3 file (by setting
the output format option -f to gff3_match_cdna).

In order to pick the final transcripts, Mikado uses assembled transcripts combined with
high-confidence splice junctions generated by Portcullis (v1.1.2) (90) with the mapped reads as
input (merged and sorted), predicted ORFs for the assembled transcripts generated by
TransDecoder (v5.5.0) (97), and homology results of transcripts to SwissProt (viridiplantae)
sequences generated by NCBI-BLAST (blastx) (v2.9.0) (76). While default options were used
for Portcullis and TransDecoder, for blastx, maximum target sequences were set to 5 (-
max_target_seqs 5) and output format to xml (-outfmt 5). The following were provided as inputs
for Mikado: all transcript assemblies (with strandedness marked as True for all except for Trinity,
and with equal weights) in GFF3 format, portcullis generated splice sites in bed format,
TransDecoder results in bed format, homology results in XML format, and a scoring matrix in
yaml. Final transcripts from Mikado were exported in GFF3 format, and transcripts and proteins
were then converted to fasta format using the gffread utility of the Cufflinks package.

Ab initio predictions were performed using BRAKER (v2.1.2) (92) with both evidence-
based predicted proteins and mapped RNA-seq reads as input. BRAKER was run iteratively,
with the first round using the hard-masked genome (primarily to speed-up the protein
alignments and to generate a hints file from the BAM file) and the second round using a soft-
masked genome with proteins/RNA-seq hints for finalizing the ab initio predictions. Default
options were used in BRAKER, with the exception that gth was substituted as the protein aligner
(--prg=gth), models trained using protein alignments (--gth2traingenes), the soft-masked
genome was provided as input (--softmasking), and output predictions were generated in GFF3
format (--gff3).
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A working set (WS) of models was generated for each NAM line to capture the complete
gene space by combining evidence based and non-overlapping BRAKER gene models using
BEDtools (v2.17.0) (Aaron. A et al 2010). Additional structural improvements on the WS models
were completed using the software PASA (v2.3.3) (93) iteratively with default options. 69,163
B73 full-length cDNA (94) and an additional 46,311 transcripts from 11 developmental tissues
(95) were filtered for intron retention and then used in combination with ~2 million maize ESTs
from genbank with the Mikado generated transcripts as evidence to update WS gene models
with PASA. PASA was run with default options, with a first step of aligning transcript evidence to
the masked NAM genomes using GMAP (v.2018-07-04) (96) and Blat (v.36) (97). The full-
length cDNA and Iso-seq transcript IDs (98) were passed in a text file (-f FL.acc.list) during the
PASA alignment step. Valid, near-perfect alignments with 95% identity were clustered based on
genome mapping location and assembled into gene structures that included the maximal
number of compatible transcript alignments. PASA assemblies were then compared with NAM-
generated transcript models using default parameters. PASA on average updated 12,927
protein coding models across the NAM lines (Supplementary Table3) with the majority of
updates being UTR maodifications (73.8%), followed by alternative isoforms (35.1%) and novel
genes (5.5%). Transposable element (TE) related genes were filtered from the evidence and
non-overlapping BRAKER sets using the TEsorter tool (99), which uses the REXdb
(viridiplantae_v3.0 + metazoa_v3) database of TEs. The TE filtered WS had 110,498 gene
models on average across the NAM lines (lowest of 101,754 in B73 and highest of 118,596 in
Tzi8).

The TE filtered WS models were given Annotation Edit Distance (AED) scores using
MAKER-P (v.3.0) (Campbell. M et al, 2014). Only models with AED < 0.75 passed to the high-
confidence set (HCS). The number of gene models dropped to an average of 45,768 transcripts
per NAM accession in the HCS (lowest of 44,424 in B73 and highest of 47,262 in Mo18w)
(Supplementary Table4). The HCS gene models were further classified based on homology to
related species, and assigned coding and non-coding biotypes. Protein sequences were aligned
to the canonical translations of gene models from Sorghum bicolor, Oryza sativa, Brachypodium
distachyon, and Arabidopsis thaliana obtained from Gramene release 62 (7100) using USEARCH
v11.0.667_i86linux32 (707). The HCS gene models were checked for missing start and stop
codons. On average 8,078 out of 32,470 conserved genes and 5,003 out of 8,862 lineage-
specific genes had incomplete CDS. The CDS boundaries of the transcripts were modified
based on conserved start codon positions or extended to a start or stop codon whenever

possible. All conserved genes in addition to lineage-specific genes that had a complete CDS
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were marked as protein-coding. The remaining lineage-specific genes were marked as non-
coding. HCS gene models were checked and potentially split or merged using the GFF3toolkit
(2.0.1) (102). Gene ID assignment was made as per MaizeGDB nomenclature schema
(https://www.maizegdb.org/nomenclature) for each line. Functional domain identification was
completed with InterProScan (v5.38-76.0) (7103). TRaCE (7104) was used to assign canonical
transcripts based on domain coverage, protein length, and similarity to transcripts assembled by
Stringtie. Finally, the gene annotations were imported to ensembl core databases, verified, and
validated for translation using the ensembl API (705). The exported GFF3 annotation files were

validated and reformatted again using GFF3toolkit.

Centromere annotation

Functional centromere regions were annotated using ChlP-seq with antisera to maize
Centromeric Histone H3 (CENH3) as described (40). CENH3 ChiIP-seq data from B97,
CML228, CML322, CML247, CML52, CML69, Ky21, Mo18W, M37W, M162W, Ms71, NC358,
Oh43, and Tx303 are from (39) and can be obtained from GenBank (SRP067358); and ChlIP-
seq reads for B73, CML103, CML277, CML333, HP301, 1114H, Ki11, Ki3, NC350, Oh7B, P39
and Tzi8 are from (40) and available under project PRINA639705.

Centromere positions of each NAM line were projected to B73 by mapping both CENH3
ChlP-seq data and genomic input data to the B73 genome with bwa-mem (v0.7.17) (63). ChIP
enrichment was calculated by normalizing RPKM values from the ChIP data against the
genomic input in 5 kbp windows with deeptools (v3.3) (706). Enriched islands with a ratio above
2.5 were identified and merged with a distance interval of 1 Mbp using bedtools (v2.29) (107).
The final centromere coordinates were determined by visual inspection of the ChlP-seq peaks in
IGV (v2.8) (108). Centromeres that were not mappable by CENH3 ChIP were defined as the
midpoint of the largest CentC array in B73.

DNA methylation and identification of unmethylated regions (UMRS)

DNA methylome sequencing libraries were prepared from the second leaves of 5 to 9
plants (at a stage before the unfurling of the first leaves) using the NEBNext® Enzymatic
Methyl-seq Kit (New England Biolabs #E7120S). At least two biological replicates were
prepared and analyzed in this way for B73 each NAM founder. The input for each sample

consisted of 200 ng of genomic DNA that had been combined with 1 pg of control pUC19 DNA
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and 20 pg of control lambda DNA and sonicated to fragments averaging ~700 bp in length using
a Diagenode Bioruptor. All libraries were amplified with 4 or 5 PCR cycles. The libraries were
lllumina sequenced using paired-end 150 nt reads, with a minimum of 300 million reads per
NAM founder, divided between biological replicates. Reads were trimmed of adapter sequence
using cutadapt (version 2.6, default parameters except -q 20 -a AGATCGGAAGAGC -A
AGATCGGAAGAGC -0) (109). Reads were aligned to each genome and methylation values
called using BS-Seeker2 (version 2.1.5, default parameters except -m 1 --aligner=bowtie2 -X
1000) (7110). The previously separate replicates were merged together for subsequent analyses.
Methylation averages were calculated for whole genomes and for specific sets of genetic
elements using CGmapTools (7717). UMRs were identified as described in (772). Briefly,
reference genomes were segmented into 100-bp intervals. Intervals lacking at least four
covered CHG-context cytosines (CHGs) were discarded. Coverage was calculated on a per-
cytosine basis and summed over each interval, and any interval with less than 20 reads
covering CHGs was discarded. Intervals with methylation of greater than 20%, calculated using
the weighted methylation formula (7173), were also discarded. This was repeated on 20bp sliding
increments, and all overlapping intervals or intervals separated by only 20 bp were merged to
define larger UMRs. UMR edges were then trimmed such that their boundaries were defined by
CHGs with less than or equal to 20% methylation. At this stage UMRs that overlapped with
blacklisted regions (identified based on abnormally high coverage of the 150nt paired end
lllumina reads that were used in each genome’s assembly) were discarded. This process was
repeated using CG/CHG methylation combined rather than CHG methylation alone and both
sets of UMRs were merged. Finally, UMRs that were shorter than 150 bp in length were
discarded.

A conservative approach was used to identify UMRs present within B73 that were either
methylated or unmethylated in other NAM lines at homologous loci. B73 UMRs were divided
into quarters of equal length. Based on EM-seq reads mapped to B73, a minimum CHG
coverage of ten and a minimum covered CHG count of four was enforced in each UMR quarter.
UMRs that satisfied these criteria were separated into those with >= 50% mCHG in all quarters
(methylated) or < 20% mCHG in all quarters (unmethylated). UMRs in which all four quartiles
were methylated were classified as high-confidence differentially methylated regions (DMRs),
and UMRs in which all four quartiles were unmethylated were classified as high-confidence
conserved UMRs. For each B73-NAM pair, the DMRs and conserved UMRs were compared to
corresponding pan-gene expression levels averaged across the ten tissues and replicates. TPM

was used for normalized pan-gene expression. Pan-genes that were absent from B73 were
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excluded from this analysis. A subset of TSS-overlapping pan-genes were selected as those
where a region from -10 to +400 bp of the TSS was at least 98% overlapped by a DMR or
conserved UMR. The NAM founder TPM/B73 TPM ratio was calculated for each selected pan-

gene. This analysis was performed separately on each NAM founder-B73 pan-gene pair.

UMR enrichment analyses

A collapsed set of UMRs identified in all NAM lines using B73 as reference was
generated using the bedtools (v2.27.1) (107) merge function. These UMRs were then
intersected with significant SNPs (p-value <0.05) from GWAS analyses using bedtools
intersect. Enrichment of significant associations was calculated by shuffling UMR intervals using
the bedtools shuffle function. To estimate genome-wide enrichment of significant associations in
UMRs, shuffling was permitted in all regions except for sequencing gaps. To assess enrichment
in low-copy, genic regions, shuffling was limited to pan-gene coordinates, plus 15-kb flanking
regions (bedtools slop), allowing overlap with known UMRs. Summary statistics of intersecting
SNPs were tabulated using bash scripts and GNU datamash (v1.3) (774). The interval size
distribution, feature overlap and other metrics were computed using the GenomicRanges
package (715).

UMRs identified in B73 were also examined to assess intersection with coding features
using the GFF files. With the bedtools intersect function, the number of significant SNPs (p-
value <0.05) from the GWAS that are present in the B73 UMR region and also in the genic

feature were computed and tabulated.

ATAC-seq and identification of accessible chromatin regions (ACRS)

Three biological replicates were included in each ATAC-seq sample, from two tissues
sources. The first tissue source was V1 stage, above-ground tissue, excluding most of the
exposed 1st and 2nd leaf blade but including coleoptile, sheath and ligule portions of 1st and
2nd leaves, developing inner leaves, and shoot apical meristem. The second was the same 2nd
leaf tissue used for EM-seq. Oh43 and Mo18w were exceptions in that they only included two
biological replicates from the first tissue source and none from the second. Finely-ground,
frozen tissue was suspended in 500 uL of LBO1 buffer (15mM Tris pH 7.5, 2mM EDTA, 0.5mM
Spermine, 80mM KCI, 20mM NaCl, 15mM 2-mercaptoethanol, 0.15% Triton X-100). The lysate
was filtered through two layers of miracloth (Millipore #475855), stained with ~1 uM DAPI and
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loaded onto a Beckman Coulter Moflo XDP flow cytometer instrument. A total of 20,000 nuclei
were sorted from each replicate and NAM founder and combined into a single tube containing
~350 uL of LBO1. Sorted nuclei containing all NAM founders within a single tube were spun in a
swinging bucket centrifuge (5 minutes, 500 rcf) and resuspended in 10 uL of LBO1, visualized
and counted on a hemocytometer under a fluorescent microscope, and adjusted to a final
concentration of 3,200 nuclei per uL using diluted nuclei buffer (10X Genomics #1000176).

For each replicate, a total of 16,000 nuclei were loaded per well on the Next GEM Chip
H (10X Genomics #1000162), targeting a final recovery of ~10,000 single nuclei per library.
Single-cell ATAC-seq libraries were prepared according to the manufacturer’s instructions (10X
Genomics #1000176, Chromium Next GEM v1.1) using the Chromium Controller (10X
Genomics #120223). Libraries were sequenced using 100-bp paired-end reads on an lllumina
S2 flow cell (NovaSeq 6000) in dual-index mode with 8 and 16 cycles for i7 and i5, respectively.
Replicated (3x) libraries were demultiplexed from single-cell ATAC-seq binary base call
sequences files (BCL) output from the lllumina S2 NovaSeq 6000 with 10X Genomics
cellranger-atac mkfastq software (v1.2) and aligned to the B73 RefGen_V4 reference genome
(21) using cellranger-atac count (v1.2), resulting in three distinct sets of FASTQ files containing
pooled NAM founders for each replicate. To assign genotypes to individual cells, a VCF file
containing NAM founder SNP information mapped to RefGen_V4 (116) was used to partition
reads by their respective genomes. Specifically, genotype probabilities for individual cells were
estimated using demuxlet with non-default values (--min-total 100) (777). Cells with genotype
probabilities less than 0.95 were removed from the analysis. Cell genotype classifications were
taken as the genotype with the maximum probability. Finally, raw reads from cells
corresponding to the same genotype were concatenated into forward and reverse FASTQ files.

Demultiplexing, genotyping and FASTQ concatenation were repeated for each pool of
biological replicates separately. Reads were then processed with fastp (version 0.20.0) (118),
with the parameters --detect_adapter_for_pe --correction --length_required 35. Reads were
aligned to the NAM reference genomes and to the B73v5 genome with Bowtie2 (version 2.3.5.1)
(7119), with parameters --local --very-sensitive-local --seed 1 -q --no-mixed --no-discordant --
maxins 1000. Aligned SAM files were converted to BAM files with SAMtools (version 1.10) (89),
with the parameters view -b -h -S. Duplicate reads were removed with Sambamba (version
0.7.1) (120), with the parameters markdup --remove-duplicates and reads were filtered for
MAPQ scores of 30 or higher with sort -F "mapping_quality >= 30". ATAC-seq peaks were
called with MACS2 (version 2.2.7.1) (121), with the parameters callpeak --format BAMPE --
gsize 1.8e+9 --keep-dup all --qvalue 0.005.
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Pan-genome Analysis

The pipeline described in (722) was used to identify homoeologous gene pairs using the
canonical transcript for each gene
(/iplant/home/shared/NAM/NAM_genome_and_annotation_Jan2021_release). This method
requires that genes have high sequence similarity and fall within the same syntenic block.
Syntenic blocks were identified by whole-genome alignment using MUMmer4 version
4.0.0.beta2 (723) with --mum -c 1000 option. As a result, any genes unanchored to scaffolds
would have been excluded.

To compare gene content among genomes, we first created a blast database of all
canonical gene model transcripts using the makeblastdb command in ncbi_blast+ version 2.8.1
with default settings. An all-by-all blast was then performed between each pair of genomes. The
results were parsed to retain hits between genes within a syntenic block that had a p-value of no
more than 1x107°. Gene pairs from the 26 genomes were added stepwise into a matrix using
the custom R script stepwise_add_to_matrix.R and executed in R version 3.6.3 (724). Tandem
duplicate genes as defined in (722) were compressed into semicolon-separated values in the
matrix and counted as a single pan-gene for downstream analyses. Lines in the initial pan-
genome matrix that had redundant transcripts were compressed such that each transcript was
contained in a single line. Additional tandem duplicates identified during this process were also
merged and all tandem duplicates are presented as semicolon-separated values in the pan-
gene matrix. There remain cases where two biologically separate gene models are annotated
as a single combined gene model, as well as genes that are incorrectly split (i.e. one biological
transcript annotated as two separate transcripts) within the final annotation that can cause
genes to be incorrectly identified as tandem duplicates in the pan-gene matrix.

To recover pan-genes that exist in a genome but were not annotated, representative
pan-gene sequences for all pan-genes were mapped to each NAM genome excluding scaffold
sequences using GMAP version 2015-09-29 (96) with output one path option. Alignments were
filtered to have greater than 90% coverage and 90% identity and to be in the same syntenic
block to the pan-gene. GMAP canonical transcripts with CDS larger than 200 bp were
intersected with annotation gff CDS files containing only the canonical transcript using
intersectBed from bedtools v2.29.2 (107) with -f 0.90 -r option. GMAP coordinates that

intersected with a canonical transcript at these thresholds were replaced by the canonical

48


https://doi.org/10.1101/2021.01.14.426684

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.14.426684; this version posted January 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC
105 and is also made available for use under a CCO license.

transcript name. Pan-genes that overlap with a non-canonical annotated transcript are still

represented as GMAP coordinates in the matrix.

Transposable Element Annotation

For each genome, both structurally intact and fragmented transposable elements were
annotated using the Extensive de-novo TE Annotator (EDTA v1.9.0) (34). The curated and
updated Maize TE Consortium (MTEC) library (https://github.com/oushujun/MTEC) was used

as the base library, so that EDTA could identify novel TE families in each genome (--curatedlib

maizeTE02052020). The high-confidence, evidence-based de-novo gene annotation of each
genome was used to remove genic sequences in the TE annotation (--cds genome.cds.fasta).
The species parameter was set to Maize (--species Maize) to use the maize-specific
classification model for terminal-inverted repeat (TIR) elements in the TIR-Learner pipeline
(7125) that was included in the EDTA package. To further control false annotations, novel TE
families that were single-copy in the source genome were identified using RepeatMasker
(v4.0.9) (126) and further removed. The remaining novel TE families of all NAM founder
genomes were aggregated following the removal of redundant sequences using the
“cleanup_nested.pl” script in the EDTA package. The non-redundant, novel TE library was
aggregated with the MTEC library to form the pan-NAM founder TE library, which was used to
annotate all NAM founder genomes using RepeatMasker (v4.0.9) with parameters “-q -div 40 -
cutoff 225”. The homology-based annotations (by RepeatMasker) were combined with the
structure-based annotation (by EDTA) and formed comprehensive TE annotations for each
NAM founder genome. TEs found by structure-based annotations were classified into families
using the pan-genome TE library based on the 80-80-80 rule, that is 80% of the TE sequence
was covered by a library sequence with more than 80% identity and longer than 80 bp.

Annotation statistics were summarized and plotted using custom Perl and R scripts.

Characterization of tandem repeat arrays

The coordinates of CentC, knob180, TR-1 and rDNA repeat arrays were determined by
blasting consensus sequences to the assemblies as described previously (42). Arrays were
defined as =100 kbp clusters composed of at least 10% repeat sequences with no more than
100 kbp spacing between repeat units. The completeness of assembled repeat arrays was

evaluated by comparing the amount of repeats incorporated in the pseudomolecules with that
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estimated with 150bp lllumina reads from the same genomes. Assembled repeats in NAM
genomes were identified with BLAST (v2.2.26) and quantified by counting non-overlapping
repeat monomers. The absolute repeat abundance for each NAM line was estimated with
lllumina reads. Paired-end short reads were subsampled to approximately 3X coverage and
aligned as single-end sequences against consensus repeats with BLAST (v2.2.26; -b 5000 -F
F). Non-overlapping fragments (= 30bp) mapped to repeat sequences in each read were
summed as the total repeat abundance. The total repeats were then normalized by read
coverage and genome sizes measured by flow cytometry (40, 43).

Knob arrays were categorized as lying in a mid-arm position if they were farther than 2
Mbp from either chromosome end. To identify conserved knob positions, the syntenic positions
for each array were defined by the up and downstream sorghum orthologous gene from their
respective genome. The knob arrays that correspond to classical knobs were identified by
comparing relative coordinates based on karyotypes (727) to genomic coordinates of knob
arrays in IGV. For the subset of knobs displayed for structural variation (Fig. 3), only arrays that
were syntenic to knobs of at least 100 kbp in length in B73 were considered.

Arrays of telomeric 7-mer repeat units (5'-TTTAGGG-3) were identified using the motif
search algorithm of the Tandem Repeat Finder tool (version 4.09 with parameters 2 7 7 80 10
50 500 -f -d -m -h) (728). To identify the boundaries of subtelomeric repeat arrays, fasta files of
the maize subtelomeric sequences were first downloaded from the NCBI database with the
following accession numbers: EU253568.1, S46927.1, S46926.1, S46925.1, CL569186.1,
AF020266.1, AF020265.1. Subtelomeric sequences were blasted (BLAST v2.7.1+) against
each chromosome of the pseudomolecule assembly for each NAM line; blast hits were then
filtered for query coverage (=280%) and percentage identify (=80%). The coordinates of the
filtered blast hits were clustered using bedtools (version 2.27.1) (107) to identify the start and
stop coordinates of the repeat clusters. IGV was then used to manually check and refine the
boundaries of telomeric and subtelomeric repeats located on the ends of the short and long arm

of each chromosome for each of the NAM lines.
Fractionation Analysis

For fractionation analyses, the exons from the outgroup Sorghum bicolor
(Sbicolor_313_v3.1 from Phytozome) were aligned to the previously described repeatmasked

NAM and B73 genomes; annotated maize genes were not used. Tandem arrays for primary

Sorghum CDS transcripts were filtered out with the script s.paralog_clusters.pl by selecting
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gene model paralogs (i.e., sharing the same gene tree) that were clustered with four or fewer
non-paralogous intervening genes as determined by the file tree_id.sorghum_bicolor.txt
generated by Gramene. Exons from this filtered Sorghum CDS set were extracted using the
Sorghum gff file and the Sorghum genomic fasta file using bedtools getfasta (707) and were
aligned to the repeatmasked maize genomes using BLAST (76), -task dc-megablast, no max
target sequences (see project GitHub for scripts and detailed parameters). Sorghum and all the
NAM founders plus B73v5 were also filtered for tandem arrays using Tandem Repeat Finder
(7128), parameters 2 7 7 80 10 50 2000 -I 1 -d —h. The coordinates of these filters were applied
to the blast outputs and all blast hits that fell within these coordinates in either Sorghum or
maize were removed using bedtools intersect with the parameter —v to select only blast hits with
no tandem repeat overlap. All sorghum genes with a tandem repeat homeolog in any NAM/B73
were removed from consideration; this was found by running the same bedtools intersect
command except with —wa —wb instead of —v for Sorghum hit coordinates that corresponded to
any NAM/B73 tandem duplication. Only Sorghum genes that had clear and distinct homeolog
associations were used; those that mapped to more than two syntenic regions were removed.

DagChainer (729) was run using parameters optimized for the large size and complexity
of maize and its large distance between genes and between syntenic orthologs: -s -l -D
1000000 -g 40000 -A 15 (-A being much higher than the default value since exon collinearity
was being determined, not whole-gene collinearity). Orthologs were scored in each NAM line
based on alignment of at least one Sorghum exon to a single gene-space locus syntenic with
the query Sorghum gene. Total Sorghum exon alignment counts per locus per maize genome
post-DagChainer were deduced using bedtools groupBy (707). Fully retained orthologs were
considered to be those that had all expected Sorghum exons aligned to the orthologous region
in each maize genome. Partial deletions were those where fewer than the total number of exons
of the Sorghum ortholog aligned. Cases where no Sorghum exons aligned at the expected
orthologous region in each maize genome were scored as fully fractionated; an ortholog is
considered not fully fractionated even if only one exon in one NAM line is present. Sorghum
exon alignments were used instead of gene model alignments in order to capture partially
deleted loci which may not be represented by a gene model annotation.

DagChainer results were then filtered for Sorghum exon alignments falling within the
identified subgenome blocks of B73 version 4 associated with syntenic coordinates of Sorghum
gene models from the file B73v4.subgenome_reconstruction.gff3 from Gramene
(/iplant/homelyjiao/B73_RefGen_V4/Annotation). Since maize underwent a genome duplication

event after diverging from Sorghum, there would be two expected sorghum orthologs in each
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maize line; therefore, each Sorghum exon orthologous in maize would have been expected to
have two syntenic copies unless fractionation had ensued. Only blast outputs in each NAM
founder that share the same B73 subgenome chromosome as the sorghum orthologs were
selected, such that if an exon is retained on both subgenomes, it would have two alignments to
one Sorghum exon, differentiated in part by maize chromosome ID. Most inversions within the
various maize lines were contained within subgenomic blocks, so they would not be excluded by
this method. However, special consideration had to be made for Oh7B’s translocation of distal
chromosome 10 to chromosome 9; all alignments that fell within that translocated region were
given the identity associated with the subgenome identity of distal chromosome 10 for the
purposes of fractionation assignment. The fractionation pipeline was tested multiple times for
accuracy using CoGe’s GEvo visualization platform (730) and the pipeline was changed as
needed to increase true positive alignments and reduce false fractionation calls, resulting in the
finalized fractionation dataset (Supplemental Dataset 1). Segregating fractionation loci were
manually checked in CoGe, and pipeline errors (i.e. false exon deletion calls) or missing exons
associated with sequencing gaps as well as loci where flanking syntenic sequence could not be
confirmed or exons were too fragmented to make a confident call were removed.

GO enrichment of both homeologs for unfractionated and segregating fractionating pairs

was generated in AgriGOv2 (137) (http://systemsbiology.cau.edu.cn/agriGOv2/) using the B73

v4 Ensembl gene model dataset corresponding to the B73 NAM gene models (associations
generated by CoGe SynFind, default parameters, using the B73 NAM gene model set as
query), with parameters SEA, FDR 0.05, Bonferroni correction, and a minimum of 5 mapping

entries.

Structural Variant Detection

Structural variants (SV) were characterized using data generated from 1) long reads of
each NAM mapped to B73, 2) chromosomal genome assemblies of each NAM aligned to B73,
and 3) in silico digested assemblies (to simulate a Bionano optical map) of each NAM line
aligned to the B73 map.

For the long-read-based SV characterization, error corrected reads from each NAM line
were mapped to B73 using NGMLR (v0.2.7) (7132) with the “--presets” option set to “pacbio” and
with “--bam-fix” enabled. The mapping step was trivially parallelized by splitting the input files
(PacBio reads) and mapping them simultaneously to the reference genome, followed by

merging the output bam files to a single bam file using samtools merge (v1.9). The merged BAM
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file was then used with SNIFFLES (v1.0.11) (732) for calling structural variants in a two round
process. The first round of SNIFFLES used stringent parameters (--max_num_splits 2, --
min_support 20, --min_zmw 2, --min_seq_size 5000, --max_distance 5000, --cluster, and --
cluster_support 2) with minimum SV size set to 100 (--min_length 100) and generated a VCF
format output for each NAM line separately. The individual VCF files were then merged using
SURVIVOR (v1.0.6) (7133), with the max distance between breakpoints set to 1000, taking the
SV type and strand into account, without using the estimating SV size option or taking the
minimum size of SV into account. Since this merged SV set does not have genotype
information, another round of SNIFFLES was run to force SV calls across all NAM lines. In the
second round, the merged SVs were provided as input (--lvcf) along with the BAM files (mapped
reads). The final genotyped SVs were combined using SURVIVOR with the same options.

Whole genome sequence alignments of each NAM against the B73 reference were
generated using minimap2 (v2.17-r941) (68). The PAF-formatted alignments were generated
using default options along with -c, (output cigar string), -x asm5 (use of ~0.1% sequence
divergence preset) and --cs (encode bases at mismatches and INDELSs) options. The generated
paf file was sorted using the core utilities sort command, followed by paftools (k8 paftools.js call)
(68) to characterize variants. The output format was then converted to a bed file in order to
visualize SV in IGV (134) using a simple awk command.

For characterizing large SVs, each NAM genome was subjected to in silico digestion
with the fa2cmap_multi_color.pl script from the BioNano solve program, using CTTAAG as the
enzyme motif. This generates a simulated, assembled BioNano map in cmap format. The cmap
files were aligned against the B73 cmap file using RefAligner tool from runCharacterize.py and
runSV.py script of BioNano solve. Default options were used for both steps, with the arguments
supplied through an XML file (optArguments_nonhaplotype_noES_DLE1_saphyr.xml). The
resulting smap file (with the list of structural variants detected between query maps and
reference maps in tsv format), was then converted to VCF format using the smap_to_vcf v2.py
script. The final SV file in VCF format was filtered to only include SVs greater than 1 Mbp using
an awk command. Due to lack of resolution near the breakpoints, the SVs were subjected to
manual inspection using the paftools alignment in IGV and synteny dot-plots, to refine the start
and stop of the SVs called using this method. Calls of Bionano SVs across all NAM lines were
made by selecting common boundaries across the lines. The most 5’ start position and the most
3’ end position were used as the coordinates for the collapsed SV, and the genotypic calls for

these overlapping SVs from the same individual were merged. The final curated SVs were
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combined to generate a joint SV file using SURVIVOR, with similar options as explained before.
The final SV set was generated by merging the SNIFFLES SVs with the curated BioNano SVs.

Analysis of Flowering-time Genes

As proof-of-concept that SVs affect important traits, we closely investigated 39 known
flowering-time genes (53). We found the B73v5 coordinates for these 39 flowering-time genes
and extracted the high confidence SVs of those gene coordinates (genic regions) plus 5 kb
upstream (promoter regions) using bedtools (707). SVs for each genome relative to the B73v5
genome were further filtered to include only insertions or deletions. These data were formatted
for the IGV browser (7134). For each promoter and genic region of a flowering-time gene across
all genomes, unique insertion or deletion events were catalogued manually. These candidate
SVs were investigated for association with changes in gene expression using t-tests between
lines with and without a unique indel.

Transcripts Per Million (TPM) was calculated for each candidate gene across six specific
tissues: V11 leaf base, middle, and tip; V18 tassel; and R1 anthers and ears. The presence or
absence of a candidate SV was used to predict the TPM of the candidate gene for a specific
tissue (t-tests, accounting for (un)equal variances between groups). Out of a total of 62 unique
indels and 372 tests while using the Benjamini-Hochberg procedure for multiple testing
correction at alpha equal to 0.05 (735), we found 18 unique indels significant and 24 significant
tests. Focus for intense study was on those significant indels that were present in at least 2 or
more NAM lines and those genes which had multiple significant indels.

Additionally, we inspected the previous 39 candidates as well as an additional 134
known flowering time genes (Li et al 2016) for differences in gene expression between the
temperate and tropical lines without tissue specificity, i.e. the TPM value was averaged across
all tissues for a given line. Similar cut-off criteria were used as before. While no candidates
surpassed the multiple testing cut-off, there were candidates with greater than +/- 2 log2 fold
change between temperate and tropical lines. Candidates that met the log2 fold change cutoff
were manually scanned for indels using the IGV browser as before (734). If an indel was found
segregating between lines, an ANOVA determined if there were significant differences between
indel haplotypes (Figure S17). Further confirmation was achieved using CoGe (7130) to manually
inspect these loci. TE annotations gave support to a TE origin for these candidate SVs.

Using a permutation test, the Li et al 2016 candidates were significantly enriched with

GWAS SNPs for Days to Silking, Anthesis Silking Interval, and Days to Anthesis (exact p-value
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ranged from 0 - 0.028). Neither the Li et al 2016 candidates or the Dong et al 2012 candidates
were more variable (i.e. had greater coefficient of variation in expression) as random subsets of
genes (p-value 0.677-0.995).

Glossy 15 analysis

Two insertions were identified as candidates, 337 bp and 881 bp in size, associated with
changes in gene expression changes (short insertion: t = -3.932, p = 6.354x10, long insertion:
t =3.151, p = 2.923x10). The shorter insertion passed a log2 fold change cut off of (+/-) 2 at
2.06 while the longer one did not at -1.78. Those lines that contained only the shorter insertion
had significantly higher expression in V11 middle (F = 24.51, p = 4.39x107'%) and tip of the leaf
(F =24.51, p = 4.24x107°) tissue than any of the other haplotypes. Lines solely containing the
shorter insertion were Oh43, 1114H, P39, M37W, and CML277. This insertion was confirmed
with a local alignment in COGE where Oh43, l114H, M37W, and CML277 all showed alignment

with the P39 assembly while lines without the insertion were missing alignment.

ZCN10 analysis

ZCN10 had higher expression levels in tropical NAM lines compared to temperate NAM
lines (est. difference = 8.49 TPM, t = -2.346, raw p = 0.0358, log2fc = 2.940). There is a single
large insertion in CML247 and NC350, but this could not be verified by manual inspection with
CoGe. The local alignment of CoGe did detect many deletions relative to NC350 in the
upstream region of ZCN10 in temperate lines with the exception of B73, I114H, and Oh7b.
Deletions were detected in the tropical lines CML333, CML52, and Ki11. Those with these
deletions appear to have less expression than those without, but it is difficult to parse if these

deletions are correlated with TPM and if so, which deletions are the most strongly correlated.

Dof21 analysis

Dof21 had higher expression in tropical NAM lines compared to temperate (est.
difference = 32.123 TPM, t = -2.542, raw p = 0.01898, log2fc = 1.540). P39, B73, and 1l114H
were temperate outliers with higher expression while CML52, NC350, NC358, and CML247
were tropical outliers with lower expression. There were 2 insertions and 1 deletion with
segregating haplotypes in the promoter window. Those lines with only one of the insertions had
significantly lower expression than lines with both, neither, or the deletion (F = 8.658, p =

0.000317). Lines with only one of the insertions included most of the temperate lines (except
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P39) and the tropical outliers. These insertions were confirmed by manual inspection with
CoGe.

ZmCCT10 analysis

ZmCCT10 had higher expression in tropical NAM lines than in temperate lines (est.
difference = 0.2459, t = -1.844, raw p = 0.0895, log2fc = 2.063). CML247 was an outlier for high
expression. There was an insertion and deletion segregating between the NAM lines, but there
were no significant differences in TPM between the different haplotypes (F = 1.252, p = 0.307).
These deletions likely correspond to the CACTA insertion found in B73 (52). Because of the
cyclical expression pattern of ZmCCT10, it is likely our method of calculating TPM across tissue

with a single time sample limits our ability to connect these deletions to flowering time.

Analysis of Disease Resistance Genes

The NLRs were extracted from the genomic DNA sequences using NLR-Annotator (736)
and from proteomes using hmmalign with reference HMM of the grass NB-ARC (49).
Additionally, NLRs and NLR-IDs were characterized in the Brachypodium (737) and maize

annotations using the plant_rgenes pipeline (https://github.com/krasileva-group/plant_rgenes)

(138) (e-value cutoff 1x10°%). The number of NB-ARC containing proteins was compared to
those previously identified in Arabidopsis (739) and plotted using R package ggplot2 (740). The
NB-ARC domain alignment was manually curated for the presence of NB-ARC domain
functional motifs including Walker A, WALKER-B, RNBS-C, GLPL and RNBS-D. The NLR
phylogeny was determined using RAXML MPI (v8.2.9,-f a, -x 12345, -p 12345, -# 100, -m
PROTCATJTT) (7141). The phylogeny was visualised and re-rooted on the longest internal
branch in iTOL (742).

Population Genetic Analysis

GERP. Soft masked copies of 13 angiosperm genomes were aligned to the unmasked
B73v5 reference genome using LAST (7143-148). Repetitive elements in B73v5 were then
masked in the aligned sequences. A tree with neutral evolutionary rates was estimated from
four-fold degenerate sites in the alignment using rphast with default parameters (749). We then

used the tools gerpcol and gerpelem from GERP++ (7150) to estimate conservation scores at
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aligned base pairs and identify conserved elements. For gerpcol we excluded the B73 genome
from the alignment to avoid reference bias.

Enrichment analysis. To test whether structural variants were depleted in conserved
elements, we measured the overlap between structural variants and conserved GERP elements
and performed Fisher’s exact tests. For tests involving combined deletions and insertions, we
measured the overlap of base pairs in conserved elements with the presence of a structural
variant in any of the NAM parental lines. We also tested for the depletion of deletions and
insertions in conserved coding sequence, conserved noncoding sequence, and conserved non-
genic sequence. In all three of these cases, the Fisher’s exact test was testing depletion
compared with non-conserved elements. For tests involving insertions, we measured the
overlap of GERP elements with insertion start sites. As insertions may simply move conserved
elements while maintaining their function, we speculated that insertion start sites may be more
meaningful than base pairs of overlap with conserved elements. Insertions were also subdivided
into quartiles based on size to test whether the size of insertions was associated with its
depletion in GERP elements.

To test the relationship between genomic features and the presence of SVs, we used
quasi-Poisson regression in 10kb windows to explain the number of overlapping SVs based on
overlap with GERP elements, accessible chromatin (5), recombination rate (157), and the
number of masked base pairs in B73 (see supplemental Transposable Element Annotation).

The model takes the following form:

log(Ai) = Bo + Bi*gerp element overlap + B2*recombination rate + 33*open chromatin +

Bs*masked base pairs

Where Aiis the number of occurrences of SVs within the i" window. As this is a quasi-Poisson
model, the expected value of A, A, is equal to the expected number of SVs in a window, and BA
is equal to the variance of the number of SVs in a window, where 6 is a dispersion parameter.
Simulations. We used SLiM (752) to generate simulations of a 20-Mbp region consisting
of two genomic element types that represented coding and non-coding sequence. The size and
number of the element types were based on the approximate median values of B73v5 genome
annotations described in the main text. The simulated 20-Mbp region consisted of 300 genes,
each separated by 30 Kbp of non-coding bases. Each gene consisted of four 200 bp exons, and
three 300 bp introns. Three types of mutations were simulated to represent neutral, 0-fold non-

synonymous, and structural variants. 4-fold and 0-fold mutation types were restricted to the
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simulated exonic regions, where structural variants were allowed to occur anywhere along the
20 Mbp segment. The total mutation rate in exonic regions was modeled as the sum of the rate
for single nucleotide mutations (1) and structural variants (us,,). Each of the three types of
exonic mutations occurred in proportion to the average number of 4-fold, 0-fold, and total
number of exonic bases, which were 200 kbp, 57 kbp, and 240 kbp, respectively. The
distribution of deleterious fitness effects for both non-neutral mutation types were modeled using
a gamma distribution with parameters for the mean (s, and s,,,) and shape (shape, and
shapeg,), and a dominance coefficient of 0.5.

We reduced the computation time by simulating 1000 individuals in the ancestral
population. We maintained the population scaled mutation rate (6§ = 4N,u) estimated from
median pairwise diversity () in maize populations as = 0.008 (753) by increasing the mutation
rate from previous estimates of 3 x 1078 (7154) to 2 x 10~°. Following recommendations in the
SLiM manual (155), we rescaled recombination rate to match the change in mutation rate using
Tseatea=(1/2) * (1 — (1 — 2 *r)™), where r is the original recombination rate and n is the
rescaling factor determined by the ratio of the increased and original mutation rates. Previous
estimates of median recombination in maize are 1.6 x 10~8(757); following the equation above,
our simulations used a constant recombination rate of 1.05 x 107°.

In addition to modeling the distribution of fithess effects, our simulations incorporated a
simple demographic scenario based on previous studies of maize domestication (156, 157). We
assume a single panmictic ancestral population of constant size (N,) that underwent an
instantaneous bottleneck during domestication (N, ), which we assume occurred B = 0.067N,
generations ago based on archaeological and genetic data (756, 158). After the domestication
bottleneck, we assume the population size grew exponentially to its present size N,, where the
growth rate was derived from the change in population size as log(Ny/N,)/Br.

Parameter Inference with ABC. We used Approximate Bayesian Computation (ABC)
implemented in the R package abc (159) to jointly infer the distribution of fitness effects (DFE)
and demographic parameters of our model. We used the folded site frequency spectra of variant
sites from each mutation category generated from our simulations as input summary statistics to
predict the joint posterior distribution of our model parameters. We normalized frequencies by
their sum within each window and simulation. We accepted 0.5% of simulation draws with the
smallest distance between simulated and observed mutation frequency bins. The posterior
distribution was then inferred from the accepted draws using a neural network architecture with
two hidden layers using the "neuralnet" method from the abc package in R. We conducted a

total of 90,492 independent simulations by drawing parameters values from minimally
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informative prior distributions reported in the table below. Our Snakemake (760) pipeline and

SLiM code to reproduce the simulations are available here: https://github.com/HuffordLab/NAM-

genomes/tree/master/abc.

ABC model parameters and prior distributions. U is short for Uniform. The prior distribution

for sq and syv is a mixture, where 90% of draws are from a uniform and the remaining 10% were

fixed with a selection coefficient of zero.

Parameter

U

IJ’SV

So

shape,

shapey,

Prior

2% 1076
U(1071°,10"7)

1.05 x 107

1x103

discrete U(0.01N,, N,)

discrete log U(Ng, 20N,)
0.067N,

0.9 U(—0.1,0) + 0.1 (s = 0)

U(0,100)

0.9 U(—0.1,0) + 0.1 (s = 0)

U(0,100)

Description

Neutral mutation rate per base pair.
Structural variant mutation rate per base pair.

Recombination rate (scaled to match mutation

rate).

Ancestral effective population size.

Instantaneous bottleneck effective population

size.

Modern effective population size.
Bottleneck time (generations before present).

Mean selection coefficient of 0-fold non-
synonymous mutations for the 0-fold Gamma
DFE.

Shape parameter for 0-fold Gamma DFE.

Mean selection coefficient of structural variant

mutations for the 0-fold Gamma DFE.

Shape parameter for structural variant Gamma
DFE.

Model validation. We validated our approach by testing the accuracy of 100 randomly

selected simulation runs. In each case, we held out the results of one simulation and predicted

its parameters using the remaining simulated data. We evaluated the accuracy and reliability of

the model across all 100 runs by calculating: 1. proportion of posterior draws greater than true

value (prop_gt), 2. proportion times true values fell within the 95% credible interval (w.in_cred),
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3. proportion of times the mean posterior values fell within the prior (w.in_prior), and 4. The
natural log of the ratio of standard deviations of the prior and and posterior distributions
(log(var_sc)).

Analysis of empirical data. To fit our model to empirical data, we constructed 103 20-
Mbp windows along the B73v5 genome. We excluded the remainder of bases at the end of
each chromosome, which varied from approximately 1 Mbp to 18 Mbp. We developed a script to
categorize sites as 0-fold and 4-fold Using the B73v5 reference genome and gff annotation file
(https://github.com/silastittes/cds_fold). We also developed a script to calculate the folded allele
frequency spectrum of each of the three mutations types in each window
(https://github.com/HuffordLab/NAM-genomes/blob/master/abc/predict/src/get_nam_sfs.py). We
followed the same ABC approach that was used in our model validation methods above to infer
the DFE and demography parameters from the empirical data, fitting each of the 103 windows
independently. To summarize across 20-Mbp windows, we used the average value of each
parameter from each of the 103 posteriors.

To assess the degree of similarity between SFS data generated by the model and the
empirical data, we ran simulations using 20 random draws from the posterior distributions of
each genomic window. Before sampling, we excluded posterior draws that fell outside of
parameter domains, and rounded demographic parameters to the nearest whole integer. From
these 20 draws per window, we calculated the proportion of mutation counts in each frequency
bin of the simulated SFS that were greater than observed counts, where 50% of the simulated
draws should be greater than the observed under an adequate model of the data.

Mean and standard deviation of average posterior predictions across the 103 genomic
windows. Population size and mutation rate estimates are reported on the original scale, 100

times that of the simulated values.

parameter mean sd
N, 2.58 x 10° 1.87 x 10°
N, 2.95 x 10* 1.58 x 10*
Usy 2.45 x 10710 1.88 x 10710
So 0.0197 0.0210
Sep 0.0274 0.0204
shape, 29.8557 24.870
shapey, 50.148 7.965
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Genome-wide Association Study and Variance Component Analysis

We collected NAM phenotype datasets from eight publications (73, 1671—167). Seven of
the datasets are available at https://www.panzea.org/data. The phenotypic data include 36
traits, covering agronomic, developmental, domestication-related, and metabolic characteristics.
Traits had already been processed by fitting a model of best linear unbiased predictions
(BLUPs) on the multi-environment trial for each trait within each study. A total of 4,027 NAM
RILs were used for genome-wide association study and variance component analysis.
Genotype projection from NAM parents onto RILs was carried out as follows:

1. Parental SV and Marker Identification. Markers were identified in the parental
genotypes using the PacBio and Illumina sequence data described above. During the merge
step of the SNIFFLES SV calling pipeline some SVs with non-perfect overlapping boundaries
were not merged. If the genotypic calls for overlapping SVs were the same across all of the
parents that had genotypic calls, the genotypic information was subsequently collapsed. The
boundaries were retained for the SV with the least amount of missing data or the largest one (if
they had the same amount of missing data). If there was a disagreement between genotypic
calls across all parents, both SVs were retained.

2. Dataset for SV and SNP projections. All SNIFFLES SV markers were reduced to a
binary state (SV is the reference state (A) or SV is the alternate state (T)) and converted to
hapmap format for projection to the RIL progeny using the middle position of the SV as the
variant point position. The identified SNPs were filtered on a per family (RIL population) basis
and all families were combined after per-family projections were completed. The per family
filters included 1) remove parental SNPs within the boundaries of deletions using vcftools
v0.1.17 (168) and 2) remove monomorphic SNPs.

3. GATK SNP calling for NAM founders. Short reads (PE150 libraries sequenced on the
lllumina NextSeq 500 for polishing NAM genomes) were used for calling SNPs by mapping to
the B73 genome as reference. The Genome Analysis Toolkit (GATK v4.1.3.0) HaplotypeCaller
(64, 169), and best practices published by the Broad institute (770), were used along with
numerous utilities in the Picard Toolkit (v2.23.3) for SNP discovery and final variant filtering

(http://broadinstitute.github.io/picard/). For each read pair in fastq format, Picard was used to

convert to SAM format through the FastqToSam utility. MarkllluminaAdapters was run on SAM
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files to mark the lllumina adapters and generate metrics files. The SAM formatted files were
converted back to interleaved fastq files using the Picard SamToFastq utility and these were
mapped to the BWA-MEM-indexed B73 genome using recommended options (-M) (771). The
obtained SAM file was converted to BAM using samtools and aligned reads were merged with
unaligned reads using Picard’s MergeBamAlignment utility, marking duplicates with the
MarkDuplicates utility. In the last step of processing BAM files, AddOrReplaceReadGroups was
used to add the correct read-group identifier before calling variants with HaplotypeCaller.
HaplotypeCaller was trivially parallelized by running simultaneously on 1-Mbp intervals of the
genome (2,813 chunks, including scaffolds), and the VCF files were gathered to generate a
merged, coordinate-sorted, unfiltered set of variants (SNPs and INDELS). Stringent filtering was
performed on the raw set of SNPs using the expression (QD < 2.0 || FS > 60.0 || MQ <45.0 ||
MQRankSum < -12.5 || ReadPosRankSum < -8.0 || DP > 5916), where DP was estimated from
the DP values of the SNPs (standard deviation times 5 + mean). This filtered set of SNPs was
used as “known-sites” with Picard’s BaseRecalibrator and ApplyBQSR for recalibrating the
processed BAM files from the previous round. The second round of GATK HaplotypeCaller was
run using the same method as before and the variants were separated (SNPs and INDELS),
quality filtered, and finalized for downstream analyses.

4. GBS SNP calling for RILs using stacks. We followed methods, along with commands
and parameters for GBS SNP calling using Stacks, from the online workbook

(https://bioinformaticsworkbook.org/dataAnalysis/VariantCalling/gbs-data-snp-calling-using-

stacks.html). Briefly, metadata obtained from the CyVerse Data Commons and data
downloaded from NCBI-SRA (BioProject ID: SRP009896) were processed using the Stacks
(v2.53) (172) recommended pipeline. Barcodes were formatted and used with the
“process_radtags” function to demultiplex the data. The demultiplexed reads were then aligned
to the B73 genome using BWA-MEM under default parameters. Output SAM files were
converted to BAM, sorted, and indexed after adding the correct Read-Group for each sample
with the Picard Toolkit (v2.23.3). The Stacks program command “gstacks” was run using all bam
files together, followed by the “populations” command (default options except --vcf, for VCF-
formatted output) to generate the final GBS SNPs file. Redundant positions were collapsed to a
single line in this file.

5. RIL Genotyping-by-Sequencing Anchor Markers. SNPs identified from GBS data were
used to define haplotype blocks for projection of our dense SV and SNP parental markers to the
4,950 NAM RILs. The GBS SNPs were filtered prior to conducting the projections. These filters

and subsequent projections were applied on a per family (RIL population) basis and then all
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families were combined after the per-family projections were complete. The per family filters
included: 1) remove SNPs that were contained within a parental deletion of 100 kbp or less
(95% of all deletions) using vcftools v0.1.17 (168), 2) remove monomorphic SNPs, and 3)
remove SNPs with greater than 70% missing data. Finally, a sliding window approach was
applied to correct for possible errors during genotyping as described by (773). For this, a 15-bp
window, with 1-bp step size, and minimum of five markers per window was used. Only SNPs
with allele frequency between 0.4 and 0.6 were retained. After these filtering steps,
approximately 13,000-52,000 SNPs were retained per family and used to define haplotype
blocks for the parental SV and SNP projections.

6. Parental Marker Projection to RILs. The FILLIN plugin from TASSEL v 5.2.56 (174)
was used to project SVs in a two-step process. First, haplotypes were created based on SNP
and SV information in the parents using FILLINFindHaplotypesPlugin (-hapSize 3000 -minTaxa
1). Then, the parental haplotypes were projected onto missing genotypes in the RILs with
FILLINImputationPlugin (-hapSize 3000 -hybNN false). The projections were done for each
NAM family independently. Projections of the polymorphic SNPs were completed using the
same methods except the haplotype size was set to a larger size (-hapSize 70000). A sliding
window was again applied to the projected genotypes to correct possible errors in the projection
using a 45-bp window slide, 1bp step size, and a minimum of 15 markers per window. Finally,
all monomorphic SNPs were filled back into each family and all SV and SNP markers across the
families were combined into a single file.

7. Additional marker filtering for GWAS. A genome-wide association study (GWAS) was
performed by using the mixed linear model implemented in GCTA-MLMA (175). A total of
71,196 SVs with missing rate < 20% were included to estimate the genomic relationship matrix
used for SV-based GWAS and a total of 20,470,711 SNPs with missing rate < 20% were
included in the SNP-based GWAS. While the first three principal components (PCs) were
calculated to correct for the population structure, we excluded the fixed terms of PCs from the
GWAS models for all the traits, due to the equal to or slightly lower genetic variances compared
to those in the original models.

The GCTA-GREML (Genome-wide Complex Trait Analysis-REstricted Maximum
Likelihood) method (7175) was used to estimate the ratio of genetic variance to phenotypic
variance. Differing from trait heritability, this method is to estimate the variance explained by
genome-wide markers. We estimated three ratios from this analysis: phenotypic variance
explained by all the SVs (SV-based heritability), all the SNPs (SNP-based heritability), and both

SVs and SNPs (Combined-genetic heritability). The last estimation uses a method to estimate
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SVs-based and SNP-based heritability simultaneously in one model that was implemented with

the function “mgrm”.
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Supplementary Figures
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Figure S1. Cumulative Annotation Edit Distance (AED) scores in multiple recent genome
assemblies. An AED score closer to zero indicates that more evidence supports the gene
models. 83% of B73_V5 (blue) and NAM (black) gene models showed better AED values than
other maize or sorghum reference annotations (2, 6, 10, 20-22). BTx623 is the sorghum
reference genome. All others are maize assemblies.
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Figure S2. Pan-genome analysis of the gene space. A) Number of absent pan-genes in each
genotype before and after coordinate filling. B) Number of GMAP coordinate fills that
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overlapped an annotated gene model at greater than 90% coverage. The coordinate fill was
then replaced with the annotated gene model in the final pan-genome matrix. C) Proportion of
the genes in each genome that are part of the core, near-core, dispensable, and private
fractions of the pan-genome. D) Presence/absence (PAV) variation of each pan-gene in each
genotype with pan-gene order sorted by core, near-core, dispensable, and private. In C and D,
tandem duplicates were counted as a single pan-gene and coordinates were filled in when a
gene was not annotated but an alignment with greater than 90% coverage and 90% identity was
present within the correct homologous block. E) Distribution of mean copy number across
genotypes that had = 2 tandem copies for the 16,267 pan-genes that had a tandem duplicate in
at least one genotype. Values over bars indicate the number in each copy number class. F)
Proportion of annotated genes in each phylostrata level broken down by pan-gene frequency
categories (i.e. core, near-core, dispensable, and private genes). Full is the full set of annotated
gene models, Evidence is the set of gene models that were generated based on RNAseq
expression evidence from 10 unique tissues, and Ab initio are the augmented set of ab initio
annotated gene models.
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Figure S3: Bonferroni-corrected molecular function GO term enrichment (FDR 0.05) for loci in
fully retained homeologs (top) vs loci in fractionating homeologs (bottom). Red shows strongest
enrichment; yellow shows weaker (though still statistically significant) enrichment.
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Figure S6. Distribution of LTR retrotransposons on chromosome 1. Each genome is
represented by one color. Densities are non-parametric probability densities of the target
variable (e.g., the number of intact LTR-RTs). The area under a density line sums to 1. Total
LTR (including Copia, Gypsy, and unknown LTR), Total Copia, and Total Gypsy percentages
are the proportion of respective LTR sequences (including both intact LTR retrotransposons and
associated fragmented sequences) of the total assembled sequence length calculated in 500-
kbp windows and 100-kbp steps. Intact/Total LTR percent is calculated with Intact LTR
percentage (in 500-kbp windows and 100-kbp steps) divided by Total LTR percentage. The LTR
makeup is very similar among lines at the Mbp scale. Crossover density (with B73) for each
NAM line was calculated using data from (73).
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Figure S7. Assembly and components of functional centromeres. A) Distribution of
transposable elements and repeats in 260 active centromeres among NAM lines. Asterisks
depict fully assembled centromeres. Gap only includes gaps of known sizes. B) Active
centromere on chromosome 5 in B73. CentC and the five most abundant transposable element
families are shown as tracks in the lower panel.
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Figure S8. Assembly and components of repeats and transposons in the single largest knob
array on each chromosome. A) Distribution of transposable elements and repeats in the single
largest knob array on each chromosome. Lengths are based on assemblies and only include
gaps of known sizes. Asterisks depict fully assembled knobs. Unknown is unannotated. B)
Largest knob on chromosome 5 in B73. Knob repeats and the three most abundant TE families
are shown as tracks.
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Figure S11. Distribution of structural variation across minor allele frequency (MAF) bins for
various classes of size.
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Figure S13. Genetic contributions from SVs and SNPs to complex traits in the population of
NAM RILs. A) Phenotypic variance explained (PVE) by genome-wide SVs, SNPs, and
combined. The 36 traits are organized into three groups: metabolic, agronomic/morphological,
and disease-related traits. B-G) Manhattan plots of genome-wide association analyses (GWAS)
of three traits with the highest PVEs by SVs. The GWAS with SVs (B, D, and F) detected
significant QTLs, most of them overlapping with QTLs detected with SNPs (C, E, and G), but
one on chromosome 10 for NLB was unique to SVs. The statistical significance thresholds on
the Manhattan plots were obtained by controlling FDR on p-value 0.05. NLB and SLB are
northern leaf blight and southern leaf blight, respectively.
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Figure S14. Violin plot of NLR variation in the pan-genomes of a eudicot (A. thaliana) and two
monocot species (B. distachyon and Z. mays).
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Figure S15. Maximum likelihood phylogeny of all NLR containing transcripts from NAM maize
lines and S. bicolor. Dots indicate bootstrap values >80. The circle phylogeny shows all NAM
NLRs. The linear phylogeny to the right is a zoom of the rose colored region illustrating the
general trend that the NLR clades are broadly distributed across the maize NAM founder
groups.
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Figure S16. Maximum likelihood phylogeny of NLRs from NAM maize lines and S. bicolor.
Single red dots on branches indicate bootstrap values >80. Ring one shows NLR-ID Pfam
domains. Ring two shows the genes that have the corresponding Pfam domains. The colors
represent the NAM founder groups (or Sorghum). Clades delimited by red dotted lines are
segregating and not present in all NAM founders within a group.The MIC1 NLR clade
(highlighted at top) is particularly fast-evolving in Poaceae (49).
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Figure S17. Candidate flowering time gene expression (Transcripts Per Million, TPM) by indel
haplotypes. Point colors represent the population (green = tropical, orange = sweet corn, pink =
popcorn, blue = non-stiff stalk, yellow = stiff stalk, and grey = mixed). For A-C, each point
represents the average TPM across tissues and replicates. A) ZCN10 expression in temperate
and tropical groups (indel haplotype in the promoter region is unresolved). B) ZmCCT10
expression in promoter haplotypes containing a deletion, an insertion, or neither indel. C) Dof21
expression in promoter haplotypes containing two insertions and a deletion. D) GL15 expression
in promoter haplotypes with insertions. GL75 showed significant expression differences in V11
middle (left) and tip leaf tissue (right), which was not detected when all tissues were averaged
together. Since GL15 is active for a short window of development in early vegetative stages, this
fits with established knowledge of this gene. Expression is plotted based on the haplotypes
created by presence/absence of a short and long insertion.
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Figure S18. Spread of methylation levels for three representative genetic elements, genes
(coding DNA only), Gypsy LTR retrotransposons, and TIR DNA transposons (Tc1/Mariner, hAT,
Harbinger, and Mutator). Methylation is mC/total C for each sequence context. Horizontal lines
indicate medians. To be included in this analysis, loci had to have a minimum of 10 cytosines in
the specified context (CG, CHG, or CHH) that were covered by EM-seq reads. EM-seq reads
from each methylome were mapped to their own genomes.
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Figure S19: Whole-genome methylation levels for individual biological replicates. Methylation is
mC/total C for each sequence context. EM-seq reads from each methylome were mapped to
their own genomes.

87


https://doi.org/10.1101/2021.01.14.426684

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.14.426684; this version posted January 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC

methylation

methylation

0.84-
0.82-
0.80-
0.78 -

0.66 -
0.64 -
0.62-

0.018-
0.016-
0.014-

1.00 -
0.75 =
0.50 =
0.25 -
0.00 -

CG

1.00 -
0.75 =

CHG

0.05 -

CHH

0.50 -
0.25 -
0.00 -

0.03 -
0.02 -
0.01 -
0.00 -

105 and is also made available for use under a CCO license.

CG
° ® ’ ¢
L ]
H a
CHG
CHH
[ J
: .
[ ] ° [ ]
S N & >
@0\ &\\o &b&oo ,{be"’% &\\Q;o (b@g)
@\9' & Q)"b 5 @\9, ob‘
CACTA (TIR) CentC Copia genes (CDS) Gypsy knob180 TIR TR-1
ll ll L ‘1‘ L 1 JIL L} l$ l 1 ‘ 1 1 1 ‘ 1 L}
0\ A A A A A A 0\
DAY DAY > DAY DAY DAY PANG) DAY
AN é&\?’o@ ‘5%%}0‘\& Q;\Z S q;\ryov“ q;\z\:"ovb‘ é\é\\'}o@‘ Q’,\Z AN

Figure S$20. Additional comparisons of B73, CML247, and Oh43 methylation. A) Whole-genome
methylation levels for individual biological replicates of primary root six days after planting and
V18 growth stage meiotic tassel. Methylation is mC/total C for each sequence context. EM-seq
reads from each methylome were mapped to their own genomes. B) Spread of methylation
levels for representative genetic elements in developing second leaves. The same data are
shown as in Fig. S18 but with the addition of five more genetic elements. Methylation is mC/total
C for each sequence context. Horizontal lines indicate medians. All loci except CentC had to
have a minimum of 10 cytosines in the specified context (CG, CHG, or CHH) that were covered
by EM-seq reads. CentC was required to have 3 CGs or 5 CHGs. EM-seq reads from each
methylome were mapped to their own genomes.
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Figure S21. Total length and counts of UMRs. UMRs were defined relative to individual
genomes by mapping each set of EM-seq reads to its own genome and defined relative to the
B73 genome by mapping to B73. Position categories are as follows: UMRs with any overlap
with genes are genic; of the remaining set, those with any overlap with the 5-KB flanks of genes
are proximal; and the rest are distal.
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Figure S22. Spread of UMR lengths. UMRs were defined relative to individual genomes by
mapping each set of EM-seq reads to its own genome and defined relative to the B73 genome
by mapping to B73. Position categories are as follows: UMRs with any overlap with genes are
genic; of the remaining set, those with any overlap with the 5-KB flanks of genes are proximal;
and the rest are distal. This analysis includes UMRs that are less than 150 bp in length (which
were excluded from all other analyses). Y-axes are on a log10 scale. Boxplots denote medians
and quartiles.
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Figure S23. Overlaps of accessible chromatin regions (ACRs) by UMRs. Overlaps are >= 1 bp.
UMRs and ACRs were defined relative to individual genomes by mapping each set of EM-seq
and ATAC-seq reads to its own genome. Position categories are as follows: ACRs with any
overlap with genes are genic; of the remaining set, those with any overlap with the 5-KB flanks
of genes are proximal; and the rest are distal.
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Figure S24. Lengths of Accessible Chromatin Regions (ACRs). A) Distributions of lengths of
ACRs in each genome. Y-axes are on log10 scale. Position categories are as follows:
ACRs/UMRs with any overlap with genes are genic; of the remaining set, those with any overlap
with the 5-KB flanks of genes are proximal; and the rest are distal. Horizontal lines indicate
medians. B) Cumulative length of ACRs in each genome.
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Figure S25. Conserved low CHG methylation in UMRs. UMRs were defined by mapping EM-
seq reads from seven inbreds indicated at right. For each of the seven, UMRs were then
categorized into one of six methylation bins (percent mCHG relative to total CHG) based on
mapping EM-seq reads from the other 25 inbreds. Dots represent the proportion of the UMRs in
each category. The “<20“ category is what was used to define UMRs. The data are further
categorized based on position relative to genes: UMRs with any overlap with genes are genic;
of the remaining set, UMRs with any overlap with the 5-kbp flanks of genes are proximal; and
the rest are distal. Boxplots denote medians and quartiles. For these analyses, all EM-seq reads
were mapped to the B73 genome.
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Figure S$26. Heat map of the number of shared UMR regions across all pairwise comparisons of
NAM lines. Boxed areas represent group by group comparisons.
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Figure S27. Numbers of differentially methylated regions (DMRs) in each NAM founder
methylome. B73 UMRs that had greater than or equal to 60% CHG methylation in another
methylome were categorized as DMRs, while B73 UMRs with less than 20% methylation in
another methylome were categorized as conserved UMRs. Methylation was measured using the
EM-seq reads from each methylome mapped to the B73 genome and was defined as percent
mCHG relative to total CHG. A subset of TSS-overlapping pan-genes were selected as those
where a region from -10 to +400 bp of the transcription start site was at least 98% overlapped
by a DMR or conserved UMR.
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Supplementary Tables

Table S1: Accession and DNA isolation information for NAM lines

Sequenced
Original Individual DNA Isolation
Inbred Line  Acc ion Acc ion Method
B73 PI1 550473 Pl 692136 CTAB

Pl 564682 Pl1 692135 nuclei
Ames 27130 Pl 692149 CTAB
Ames 27134 Pl 692151 nuclei
PI1 587137 Pl 692153 nuclei
Ames 19288 Pl 692157 CTAB
Ames 19323 Pl 692156 CTAB

M37W Ames 27133  P1 692150 nuclei
Mo18W Pl 550441 P1 692152 nuclei
Tx303 Ames 19327 Pl 692159 CTAB

PI1 587131 Pl 692145 CTAB
Ames 28186 Pl 692158 CTAB
Ames 27118 Pl 692146 nuclei
Pl 595561 P1 692137 CTAB
Ames 28184 Pl 692138 CTAB
Ames 27081 P1 692139 nuclei
Ames 27088 Pl 692140 CTAB
Pl 595541 P1 692141 CTAB
Pl 595550 Pl1 692142 CTAB
Ames 27096 Pl 692143 CTAB
Ames 27101 Pl 692144 nuclei
Ames 27123  Pl1 692147 CTAB
Ames 27124 Pl 692148 CTAB
Ames 27171 Pl 692154 CTAB
Ames 27175  Pl1 692155 CTAB
Pl 506246 P1 692160 CTAB
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Table S2: Quality metrics for the NAM genome assemblies.
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B73 2182.08 | 2132.8 695 20 242.93 | 0.0308 |52.3551 13 160.85 162.82 0.17 0.13 95.76 27.84
B97 2193.12 | 2135.16 817 27 236.26 | 0.0303 | 49.7671 12 137.68 137.68 0.15 0.16 95.69 28.06
Ky21 2171.65 | 2121.14 664 27 238.07 0.03 19.0707 31 115.38 115.38 03 0.31 96.04 28.08
M162W | 2184.33 | 2129.28 813 27 237.44 0.03 27.8072 22 111.38 111.38 0.17 0.18 96.04 28.09
Ms71 2214.05 | 2128.11 1034 32 202.96 0.03 34.1022 19 98.45 101.56 0.22 0.21 95.97 27.91
Ohd3 |2176.4|2116.4| 777 | 30 [198.84| 0.03 |28.631| 26 |105.60 105.60 012 | 012 | 95.76 | 27.89
Oh7B |2164.7| 2124 | 634 | 29 |239.51[0.0302| 13.62 | 41 |140.10 140.10 0.4 | 041 | 95.80 | 28.04
M37W 2192.4 | 2144.22 758 29 234.27 | 0.0301 |39.6241 17 105.37 105.37 0.08 0.09 95.97 28.09
Mo18W | 2223.23 | 2132.06 1097 31 201.21 | 0.0302 |24.9769 26 111.10 111.10 0.33 0.33 96.60 27.81
Tx303 |2215.81|2124.95 1067 32 240.2 0.0302 | 27.971 24 99.16 99.16 0.31 0.26 95.83 27.71
HP301 |2140.95 | 2114.55 408 23 233.97 | 0.0304 35.6 21 135.87 135.87 0.19 0.2 95.63 28.05

P39 2138.71 | 2104.38 424 21 249.96 | 0.0305 |35.7844 21 147.88

1M4H 2124.54 | 2102.61 297 25 238.22 0.03 19.6425 31 135.80 135.80 0.15 0.16 95.63 27.83

2307.69 | 2149.15 [ 1708 36 200.09 0.03 |11.2031 58 92.05 0.93 0.96 95.76 27.92

2224.9 |2133.04| 1352 31 239.36 | 0.0301 |21.3376 31 107.57 0.29 031 95.90 28.34

2162.44 | 2117.65| 648 26 234.9 | 0.0301 |11.3391 59 129.92 0.24 0.25 95.56 283

2300.77 | 2145.83 | 1555 32 240.54 0.03 |9.55255 57 108.07 12 1.08 96.25 27.93

2214.75|2142.86 | 1091 32 200.43 | 0.0301 | 11.4266 60 101.10 0.45 0.47 96.32 28.44

2190.8 |2133.12| 928 32 194.76 | 0.0301 | 6.2549 100 98.85
2219.25|2120.08 | 1290 32 240.12 | 0.0301 |30.489%4 24 102.20
2231.26 | 2141.31| 1116 34 236.82 0.03 |28.8179 20 99.84

0.42 0.44 96.18 27.95
0.14 0.14 95.42 28.44
0.14 0.11 96.32 28.33

2215.86 | 213935 1184 29 244.14 | 0.0301 | 16.1777 43 107.93 0.39 0.41 96.67 28.27

2273.84 | 2151.7 | 1417 29 240.57 | 0.0301 |31.4035 23 110.07 0.12 0.13 95.83 27.64

2290.5 |2163.61| 1399 30 200.52 | 0.0303 |49.0042 13 100.66 0.07 0.07 96.18 27.96

2227.42 | 2126.56 | 1335 32 237.4 0.03 |25.9366 27 98.95 0.17 0.16 96.18 28.22

<]
5
6
7
6
8
8
6
7
7
8
6
147.88 6 0.11 0.12 95.76 27.61
6
8
7
6
6
8
9
7
8
7
5
7
7
7

®|(ow|[owla|(N|low|w|lvo|lV|N|o|N|([w|loa|la|la|ow|N|N|o|ow|vw || N|[o|a
©
B
®
o

2271.03 | 2134.06 [ 1570 32 239.1 0.03 |11.6145 54 100.58 0.56 0.53 96.11 27.9
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Table S3: Categorization of pan-genes for the NAM genomes. Numbers in parentheses are
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identified based on coordinate filling.

Near-Core Dispensable Private
Genome Core Gene
Gene Gene Gene
B73 27910 (3974) 4015 (1752) 15426 (8439) 414
27910 (3622) 4030 (1687) 15603 (8048) 533
27910 (3605) 3979 (1652) 15607 (7919) 564
27910 (3600) 3932 (1631) 15838 (7918) 606
27910 (3607) 4000 (1631) 15477 (7943) 558
27910 (3654) 3959 (1665) 15356 (8182) 620
27910 (3677) 3546 (1624) 15191 (7919) 1204
M37W 27910 (3626) 3993 (1671) 15507 (7894) 846
Mo18W 27910 (3590) 3849 (1612) 14918 (7558) 1244
Tx303 27910 (3617) 4009 (1642) 15071 (7583) 797
HP301 27910 (3671) 3987 (1649) 14947 (7994) 708
P39 27910 (3580) 3858 (1566) 14881 (6963) 872
l114H 27910 (3626) 3948 (1642) 14758 (7480) 810
27910 (3863) 3600 (1649) 14634 (8537) 807
27910 (3666) 4000 (1671) 15016 (8121) 903
27910 (3726) 3980 (1668) 15008 (7972) 802
27910 (3670) 3796 (1624) 15045 (8056) 781
27910 (3641) 4002 (1694) 15038 (8011) 908
27910 (3635) 3977 (1659) 14957 (8062) 966
27910 (3601) 3803 (1592) 15014 (7495) 785
27910 (3701) 4015 (1675) 15250 (8067) 865
27910 (3610) 4035 (1684) 15346 (7931) 708
27910 (3696) 3966 (1676) 15110 (8274) 776
27910 (3635) 4028 (1673) 15280 (8217) 691
27910 (3672) 4019 (1698) 15179 (8350) 684
27910 (3618) 3904 (1618) 15116 (7812) 938
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Table S4: Percentage of repetitive sequences in NAM parent genomes.
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% & % & /& 2 > > 2 > > >
& S SE &S S S S S S 0L P E S E LSS

B73 24.92% 44.25% 502% 296% 099% 106% 055% 1.15% 189% 026% 009% 006% 022% 167% 009% 005% 0.04%| 671% 8860% 041% 74.19% 8320% 2.07%|85.27%
B97 2501% 4589% 327% 297% 091% 107% 056% 1.15% 192% 026% 009% 006% 027% 211% 009% 006% 0.01%| 666% 858% 041% 73.97% 8296% 2.54%|85.50%
Ky21 24.83% 46.38% 365% 296% 091% 106% 056% 1.19% 191% 026% 009% 006% 025% 1.22% 005% 004% 001%| 668% 859% 041% 74.86% 83.86% 1.57%|85.43%
M162W |2473% 45.79% 3.98% 299% 095% 106% 051% 1.16% 189% 026% 009% 007% 038% 137% 0.15% 0.04% 0.01%| 6.67% 8.56% 042% 74.50% 8348% 1.95%|85.43%
Ms71 24.88% 4582% 3.58% 3.02% 096% 107% 051% 1.15% 190% 026% 009% 006% 032% 1.88% 003% 004% 001%| 671% 861% 041% 74.28% 83.30% 2.28%]|85.58%
0h43 24.79% 4480% 493% 299% 094% 107% 051% 1.16% 191% 027% 009% 007% 029% 146% 002% 004% 001%| 667% 858% 043% 74.52% 83.53% 1.82%]|85.35%
Oh7B  |2537% 46.20% 339% 299% 091% 107% 057% 1.16% 191% 026% 009% 006% 024% 1.00% 005% 004% 001%| 6.70% 861% 041% 7496% 83.98% 1.34%|85.32%
M37W  [24.97% 44.97% 4.54% 303% 090% 1.07% 056% 1.15% 1.90% 0.26% 009% 0.06% 0.24% 161% 008% 004% 0.01%| 6.71% 861% 041% 74.48% 83.50% 1.98%|85.48%
Mo18W |[24.74% 4534% 358% 293% 091% 1.05% 050% 1.13% 187% 025% 008% 006% 0.34% 258% 0.13% 005% 0.01%| 652% 839% 0.39% 7366% 82.44% 3.11%|85.55%
Tx303 (24.77% 4452% 453% 296% 102% 106% 043% 1.16% 1.89% 025% 0.09% 006% 0.32% 244% 0.03% 003% 0.02%| 663% 852% 0.40% 7382% 82.74% 2.84%|85.58%
HP301 |[24.58% 46.51% 4.02% 29%% 097% 1.08% 053% 1.17% 193% 026% 009% 006% 025% 0.80% 005% 0.04% 0.01%| 6.74% 867% 041% 75.11% 84.19% 1.15%|85.34%
P39 24.09% 45.15% 542% 3.00% 099% 1.08% 053% 1.17% 1.96% 027% 009% 006% 031% 1.01% 004% 003% 001%| 6.77% 873% 0.42% 74.66% 83.81% 1.40%|85.21%
1114H 24.37% 45.36% 555% 3.01% 100% 1.09% 053% 1.18% 195% 027% 009% 006% 027% 052% 003% 004% 0.01%| 6.81% 876% 042% 75.28% 84.46% 0.87%|85.33%
23.9%6% 46.52% 4.32% 3.01% 102% 107% 043% 1.18% 189% 025% 009% 006% 028% 146% 005% 0.04% 0.01%| 6.71% 860% 0.40% 74.80% 83.80% 1.84%|85.64%
2468% 4545% 4.19% 293% 099% 1.07% 042% 1.16% 1.84% 025% 009% 007% 021% 215% 006% 0.04% 0.01%| 657% 841% 041% 74.32% 83.14% 2.47%|8561%
2500% 46.16% 3.85% 298% 095% 1.07% 052% 1.17% 189% 026% 009% 007% 027% 1.03% 005% 0.04% 0.01%| 6.69% 858% 042% 75.01% 84.01% 1.40%|85.41%
2501% 46.17% 363% 3.00% 101% 107% 056% 1.13% 188% 026% 008% 006% 024% 140% 006% 003% 001%| 6.77% 865% 0.40% 74.81% 83.86% 1.74%|85.60%
24.34% 46.12% 4.33% 296% 094% 105% 051% 1.14% 188% 026% 009% 007% 027% 152% 005% 0.04% 0.00%| 6.60% 848% 0.42% 74.79% 83.69% 1.88%|85.57%
25.36% 46.16% 3.56% 3.01% 084% 1.06% 051% 1.16% 189% 025% 008% 006% 024% 1.11% 005% 0.04% 0.01%| 6.68% 857% 0.39% 75.08% 84.04% 1.45%|85.49%
24.11% 4534% 443% 292% 102% 1.06% 043% 1.15% 184% 026% 009% 006% 0.34% 260% 005% 0.04% 0.01%| 6.58% 842% 041% 73.88% 82.71% 3.04%|85.75%
24.02% 4553% 4.53% 295% 099% 1.06% 042% 1.15% 1.88% 025% 009% 006% 031% 243% 005% 005% 0.01%| 657% 845% 0.40% 74.08% 82.93% 2.85%|85.78%
24.93% 46.03% 361% 296% 102% 106% 043% 1.15% 186% 025% 009% 006% 034% 172% 007% 004% 0.01%| 6.62% 848% 040% 74.57% 8345% 2.18%|85.63%
24.24% 4381% 464% 290% 092% 1.02% 051% 1.10% 183% 025% 009% 006% 030% 383% 005% 005% 0.03%| 645% 828% 0.40% 72.69% 81.37% 4.26%|85.63%
24.10% 44.95% 355% 288% 089% 1.02% 049% 111% 182% 025% 008% 006% 035% 4.06% 009% 003% 0.03%| 6.39% 821% 0.39% 72.60% 81.20% 4.56%|85.76%
2425% 4463% 5.06% 293% 091% 105% 049% 1.13% 186% 025% 009% 007% 035% 244% 006% 005% 001%| 651% 837% 041% 73.94% 82.72% 2.91%|85.63%
24.72% 46.00% 3.87% 3.02% 1.00% 106% 042% 1.15% 1.87% 0.26% 008% 0.06% 020% 1.80% 0.05% 0.04% 0.01%| 6.65% 852% 0.40% 74.59% 83.51% 2.10%|85.61%
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Table S5: Characterization of assembly content of chromosome ends. Numbers are shown in
bp.

Inbred  Repeat 1S 1L 28 2L 3 3L 45 4 55 5L 6S 6L 7S 7L 8 8 9 9L 105 1oL
873 telomere o 1872 0 2169 2520 1820 1758 1796 0 1405 1967 2412 2669 1989 1868 1540 0 2010 2106 2687
subtelomere 0 1382 0 0 0 0 231616 64907 282947 8291 87701 0 0 0 0 52576 0 0 0 6930
TR 0 0 0 0 0 0 0 0 0 0 5300688 0 0 0 0 0 0 0 0 0
knob180 16625 0 0 183855 117201 0 0 0 0 83695 0 628802 0 0 263042 0 1744650 80845 0 128022
BI7I telomere 0o 972 0 3279 625 2631 2093 1515 0 3521 1304 0 3560 2415 0 255 0 600 2675 2075
subtelomere 0 0 0 0 0 0 253333 76960 37492 8280 74748 4648 0 0 78691 133091 0 0 0 14566
TR 0 0 0 0 0 0 0 0 0 4852167 0 0 0 0 0 0 0 0 0
knob180 23920 0 55622 0 0 0 0 0 0 0 821406 0 0 406150 0 933214 50582 0 0
K21 telomere 1882 169 1304 0 5951 0 288 0 1946 0 1740 806 5373 o 574 0 3180 582 1210
subtelomere 0 0 54369 0 0 0 65537 70502 24316 0 0 0 0 0 0 112338 0 0 0 0
TR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
knob180 72322 0 0 180286 205371 0 0 0 0 73300 68525 637709 0 0 303302 0 276793 51248 0 138114
[MAB2WI] telomere 1246 0 1249 2099 4523 1608 269 0 0 1386 2177 907 6636 576 526 0 3257 1938 1865
subtelomere 0 0 0 0 0 0 238664 64939 22079 0 0 0 0 0 128515 0 0 0 0
TR 0 0 0 0 0 0 0 0 0 5439392 0 0 0 0 0 0 0 0 0
knob180 10187 0 0 174149 214753 0 0 0 0 28663 0 642355 49068 0 255749 0 733871 51342 0 0
MSZAN telomere 0 9838 0 2081 6098 3575 0 0 0 4135 0 5367 10537 8683 5137 4014 0 2606 3388 4976
subtelomere 0 0 0 0 0 0 24227 0 35423 0 0 0 0 0 0 91024 0 0 0 e792
TR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
knob180 26027 0 0 124867 202501 0 0 0 0 75472 566943 82065 0 0 266305 0 353203 49249 15554 130313
[ORa3I telomere 0 4515 0 398 9530 4469 945 5693 0 2563 0 1991 5470 6515 337 574 0 519 428
subtelomere 0 0 0 0 0 0 238206 76984 30830 8321 0 0 0 0 0 89358 0 0 [ 0
TR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
knob180 22783 0 0 146257 0 0 0 0 0 71482 75588 673981 26404 0 255157 0 424845 48039 0 46637
[OR7BI telomere o 215 0 4391 468 2372 0 3892 0 1533 2234 0 968 6665 2228 3202 123 2389 0 951
subtelomere 0 1565 o 1570 0 0 0 64343 20676 5191 0 0 0 0 0 91852 0 0 0 0
TR 0 0 0 0 0 [ 0 0 0 1801070 0 0 0 0 0 0 0 0 0
knob180 13020 0 0 190821 205105 0 252203 0 0 69862 0 520782 49126 0 263067 0 13787 51378 360273 0
M37TW  telomere 0 630 0 5477 1359 316 920 4354 0 173 863 923 5832 1270 720 0 1984 2352 1421
subtelomere 0 0 54369 0 0 0 157106 83442 52488 32504 0 0 0 0 0 92274 0 0 0 0
TR 0 0 0 0 0 0 0 0 5460139 0 0 0 0 0 0 0 0
knob180 41910 0 0 180277 202674 33881 0 0 0 11562 0 648807 0 0 262124 0 807328 46137 14542 131920
Mo18W  telomere 0 0 0 o 785 0 0 o 315 0 983 0 0 156 157 0 0 0 0
subtelomere 0 0 0 1570 0 0 101944 93270 16610 5174 0 0 0 0 0 91775 0 0 0 0
TR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
knob180 20479 0 0 180284 214753 0 0 0 0 64546 203592 717268 37558 0 265595 0 719550 35003 22284 0
T3 telomere 0 5824 0 5584 363¢ 6821 6474 6750 5012 8732 0 4341 5044 3820 5760 9005 0 7821 5955 6146
subtelomere 0 [} 0 0 0 0 202462 0 202693 5168 0 0 0 0 0 90612 0 0 0 0
TR 0 0 0 0 0 [ 0 0 0 0 0 0 0 0 0 0 0 0 0
knob180 25992 0 0 193347 212403 0 0 0 0 0 147257 719938 0 0 309155 0 811431 76566 18402 0
HP301 telomere 0 3628 0 0 454 4211 1306 1417 0o 17 204 0 0 5495 0 2024 534 1966 599 467
subtelomere 0 0 18536 0 0 0 160262 52523 8818 198723 0 0 0 3501 117525 0 0 0 6965
TR 0 0 0 0 0 0 0 0 0 0 2589643 0 0 0 0 0 0 0 0 0
knob180 21938 0 0 173089 0 34203 0 0 0 11562 0 605418 17668 0 306780 0 477680 35008 0 125803
[PE telomere 2108 1608 4008 4441 3031 3312 0 263 5621 0 4906 0 3408 1729 0 0 1704 5203 3613
subtelomere 0 0 49654 0 0 0 274084 77004 57281 5187 0 0 0 0 121994 0 0 0 6930
TR 0 0 0 0 0 0 0 0 [} 0 5298128 0 0 0 0 0 0 0 0 0
knob180 0 0 0 186491 0 0 0 0 0 66929 0 643617 0 0 262879 0 769650 60B81 0 128952
TR telomere 0 5879 0 6257 182 5238 0 0 o 783 0 216 183 4683 937 301 o 17 0o 388
subtelomere 0 0 0 0 0 0 0 75935 77026 0 0 0 0 0 259406 122506 0 0 0 6924
TR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
knob180 17653 0 0 191458 0 35247 0 0 0 67251 91524 716090 0 0 262010 0 1100389 60347 0 125725
[EMESE t=lomere 3447 0 2751 159 159 0o 2728 0 5865 0 776 2693 700 0 0 0 979 2759
subtelomere 0 [ 0 0 [} 0 37453 69741 16601 0 0 46600 0 0 0 44750 0 0 0 693
TR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
knob180 10491 0 0 180254 0 35463 0 0 0 67210 67634 567446 29952 0 264776 0 192608 43105 0 128720
WSO t<lomere 0 885 0 4805 2099 1521 0 2689 0 0 0 475 667 3372 991 91 0 1887 209 933
subtelomere 0 0 0 142458 0 0 40705 70499 93427 0 0 54159 0 0 0 7712 0 0 [ 0
TR 0 0 0 0 0 0 0 0 0 0 0 59433 0 0 0 0 0 0 0 0
knob180 0 0 0 198669 208393 42780 0 0 0 28660 88909 452215 29809 0 268164 0 276388 49960 0 126899
WO t<lomere 0 a8 0 258 1362 571 0 3382 0 2887 0 75 0 3s& 2217 161 0 3491 0 1505
subtelomere 0 1382 0 0 0 0 67564 254868 20527 5141 0 s308 0 0 21716 91778 0 0 0 6929
TR 0 0 0 0 0 0 0 0 [} 0 245023 0 0 0 0 0 0 0 0 0
knob180 14602 0 0 178072 212402 36115 0 0 0 65873 0 671900 24929 0 282078 0 738875 74020 0 134670
BN t=lomere o o74 0 1014 3014 250 o 409 0 126 0 702 481 4806 430 2840 0 2386 2219 565
subtelomere 0 0 0 112149 0 0 194338 62822 8120 263212 0 610475 0 0 259635 91222 o 7915 0 0
TR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
knob180 11997 15038 0 148828 205456 56244 0 0 0 11562 204086 636781 29842 0 270894 0 426860 78464 14416 46648
[EWIEZE t=lomere 0 3944 0 0 310 2079 1218 0 0 0 1367 189 19 0 2073 0 0 68 775
subtelomere 0 0 0 0 0 0 229468 57410 18166 5167 0 524985 0 0 0 102275 0 0 0 17691
TR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
knob180 156565 14828 0 174717 203301 58056 0 0 0 62456 62150 556036 29562 0 200471 0 150215 35744 13332 0
W t=lomere 0 2832 0 0 216 1505 0 4464 0 1782 0 1608 8784 0 0 0 261 0 w7
subtelomere 0 0 0 0 0 0 0 84695 77404 5195 0 0 0 0 0 23025 0 0 0 6926
TR 0 [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
knob180 15011 0 0 189286 11489 57514 0 0 0 72309 69451 570369 30785 0 212203 0 162657 88286 22276 133283
BB telomere 0 0 0 6492 828 1700 3879 1124 0 185 0 574 1208 8172 0 209 0 4088 1943 1212
subtelomere 0 0 0 0 0 0 214038 75517 16654 207581 0 0 0 0 0 84328 0 0 [ 0
TR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
knob180 12144 0 0 182822 0 57708 0 0 0 11565 114425 665666 0 0 245563 0 37154 68899 14145 90491
MBI t=lomere 0 0 3878 823 4813 0 0 0 2204 0 4182 458 1501 717 887 0 667 1031 3035
subtelomere 0 0 0 142416 0 0 70414 78959 27400 14834 0 655955 0 0 21755 252584 o 7914 0 6930
TR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
knob180 22450 0 0 197699 0 0 0 0 0 72184 68082 685710 29634 0 261854 0 576635 48036 0 128366
S t=lomere 0 3000 0 1655 802 352 1786 2888 372 2591 0 0 2796 5081 1999 1688 0 2162 0 23
subtelomere 0 0 0 0 0 0 204288 26364 53664 0 0 0 0 0 0 70126 0 0 0 671
TR 0 0 0 0 0 0 [} 0 0 0 0 0 0 0 0 0 0
knob180 211656 0 0 177272 214245 56346 0 0 0 114821 64737 579799 0 0 272906 0 31076 35023 0 133348
[ = lomere 0 3042 0 1336 2009 1897 1761 2395 0 738 2270 212 1827 7266 3011 1839 0 3365 1820 0
subtelomere 0 [ 0 0 0 0 204313 76319 37920 368749 0 0 0 0 0 86477 0 0 0 0
TR 0 0 0 0 0 0 0 0 5088847 0 0 0 0 0 0 0 0 0
knob180 29687 0 0 179712 217673 36936 0 0 0 11565 0 655432 33205 0 7420 0 884538 71958 14016 0
|NEES0 t<lomere o 6751 0 4747 5562 5559 5972 4675 0 4163 0 6854 5242 9225 3862 5181 4350 5872 5073 6582
subtelomere 0 0 0 0 0 0 23543 60064 192258 0 0 0 0 0 0 87596 0 0 0 6928
TR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [ 0
knob180 23837 0 0 183109 0 0 0 0 0 62085 3245561 761843 0 0 272025 0 1903033 64439 0 0
|NEESE t=lomere 4432 0 2350 3749 3037 2019 3034 0 2178 0 1272 1761 7803 238 3187 0 2425 970 1244
subtelomere 0 0 0 0 0 0 208675 60044 18125 119933 0 0 0 0 0 84333 0 0 0 6926
TR 0 0 0 0 0 [ 0 0 [} 0 0 0 0 0 0 0 0 0 0 0
knob180 12367 0 0 180719 193728 0 0 0 0 0 101392 655320 27813 0 283525 0 33821 70630 0 127053
TS = omere 0 172 0 374 2156 2395 812 325 0 0 0 1661 0 412 183 757 0 1459 824 1867
subtelomere 0 0 0 0 0 0 205063 75203 22836 0 0 0 0 0 o 77357 0 0 [ 0
TR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
knob180 10480 0 0 178077 205093 0 0 0 0 81085 92693 700411 164155 0 27019 0 432572 72508 0 0
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Table S6: Extent of structural variation relative to B73 across the NAM assemblies including
deletions (DEL), insertions (INS), inversions (INV), duplications (DUP), and translocations
(TRA).

nam_line type count size(Mbp) nam_line type count size(Mbp) nam_line type count size(Mbp) nam_line type count size(Mbp) nam_line type count

23533 INS 4249 1.69 84 . 10 0.0061 TRA 950
22851 INS 4117 1.7 69 I 4 904
25060 INS 4635 1.85 73 8 1029
23974 INS 4329 1.74 74 6 992
22755 INS 3988 1.57 82 6 881
22243  241.38 B INS 5923 5.72 7 8 909
24652  271.33 M37TW  INS 4497 1.76 74 6  0.0032 M37W TRA 968
25811 286.33 Mo18W INS 4577 1.78 85 1.27 Mo18W DUP 9  0.0033 Mo18W TRA 1034

25311 277.33 Tx303 INS 6612 6.87 Tx303  INV 87 0.83 Tx303 DUP 10  0.0033 Tx303 TRA 999
25033  273.35 INS 6612 6.87 INV 82 1.07 0.0053 946
25207  284.57 INS 4486 1.72 INV 86 1.08 0.0024 957
25141 286.65 INS 4238 1.69 INV 88 0.75 0.0021 970
25534  276.54 INS 6717 6.65 INV 73 0.73 0.0022 1017
25754  283.95 INS 6637 6.52 INV 68 0.32 0.0021 919
25482  283.17 INS 4468 1.73 INV 87 0.82 0.0014 1024
25969  281.35 INS 6674 6.59 INV 77 0.56 0.0016 991
26361 288.40 INS 6838 6.65 INV 70 0.60 0.0045 941

25663  280.11 INS 6440 6.14 INV 73 0.83 0.0027 968
24665  267.92 INS 6362 6.15 INV 67 0.68 0.0043 974
25061 275.46 INS 4478 2.04 INV 78 0.93 0.0052 943

25536  274.63 INS 6495 6.53 INV 86 0.76 0.0025 953
26223  287.32 INS 6816 717 INV 83 0.85 0.0029 994
25807  284.24 INS 6941 7.40 INV 75 0.46 0.0047 1066
25434  278.31 INS 6613 6.71 INV 77 0.90 0.0041 965
25456  278.79 INS 6461 6.23 INV 73 0.41 0.0036 944
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Table S7: Extent of structural variation across the major groups of NAM lines relative to B73.
Mean/Median total sizes are shown in Mbp and mean/median sizes are shown in bp.

Group sv_type ‘mean_total_size(Mbp) median_total_size(Mbp) mean_total_count median_total_count mean_size  median_size
non-stiff-stalk  del 261.25 261.86 23,402.67 23,192.00  11,163.25  11,291.11
flints del 281.52 284.57 25,127.00 25141.00  11,204.05 11,318.84
tropical del 280.01 280.11 25,611.15 25536.00 1093329  10,969.03
mixed del 278.33 277.33 25,258.00 25311.00  11,019.47  10,957.02
non-stiff-stalk  ins 2.38 1.72 4,540.17 4,289.00 523.97 402.10
flints ins 3.43 1.72 5,112.00 4,486.00 670.21 384.17
tropical ins 5.89 6.53 6,303.08 6,613.00 933.84 988.04
mixed ins 3.47 1.78 5,228.67 4,577.00 663.80 389.32
non-stiff-stalk  inv 0.75 0.67 75.50 7350  9,88352  9,102.57
flints inv 0.97 1.07 85.33 86.00  11,317.03  12,411.92
tropical inv 0.68 0.73 75.92 7500  8,967.27  9,768.79
mixed inv 0.90 0.83 82.00 8500  11,010.98  9,764.09
0.0031 0.0027 7.00 7.00 446.86 390.93
0.0033 0.0024 6.33 7.00 515.32 344.14
0.0032 0.0029 8.92 9.00 359.06 319.11
0.0032 0.0033 8.33 9.00 389.52 361.22
non-stiff-stalk  tra 944.17 929.50 .
flints tra 957.67 957.00 .
tropical tra 976.85 968.00 .
mixed tra 1,000.33 999.00 .
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Table S8: Coordinates and copy number of the rp7 tandem array on chromosome 10S.
Coordinates are referenced to each of the individual genome assemblies.

i i # gaps in
genome rp1 alignment rp1 alignment size copy gaps |

locus start locus stop number rpl locus
B73 2823128 3532004 708876 14 10
3454017 3917737 463720 14 0
4184592 4460903 276311 10 0
3214938 3531971 317033 11 1
3007141 3073115 65974 8 0
3847294 4311005 463711 12 0
3485246 3551229 65983 5 5
M37W 3089289 4252158 1162869 30 29
Mo18W 2870789 3095369 224580 7 0
Tx303 2607068 3056758 449690 13 0
HP301 3172164 3238132 65968 7 0
P39 2746503 2880037 133534 4 0
1114H 3585827 4088413 502586 15 0
2596259 2756085 159826 5 0
3439600 3736711 297111 8 0
3211757 4325999 1114242 23 36
3114513 4067585 953072 20 20
2762984 2858688 95704 7 0
2707651 3004761 297110 7 0
2950611 3216435 265824 10 0
2819939 3359941 540002 20 0
2861923 3119062 257139 7 0
3192016 3738606 546590 17 2
3699401 4027572 328171 15 0
3225450 3761930 536480 19 0
3730377 4252564 522187 17 4
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Table S9: Number of significant GWAS SNPs (p < 0.05 after FDR correction) for each trait
within and outside of UMR intervals.

Non-Genic Genic Non-Genic,

Traits TraitlD - yyRrs UMRs _ Not in UMRs
Days_To_Sik T2 158,365 129,278 585,696
ASI T3 161,772 129,806 536,267
Leaf_Length T4 160,487 125,367 592,425
Leaf Width T5 165,028 128,798 548,964
Leaf_Angle T7 167,842 131,599 548,246
NLB_Index T8 163,889 128,753 581,637
Ear_Mass T10 161,378 123,497 617,330
Kernels_Per_Row T12 158,128 127,793 590,508
Twenty_Kernel_Weight T15 164,603 128,236 556,810
Tassel_Length T16 164,883 130,534 580,184
Spike_Length T17 164,876 135,222 545,094
Branch_Zone T19 157,589 133,458 493,808
Cob_Length T20 155,803 126,585 527,054
Cob_Diameter T21 162,893 131,872 546,333
Ear_Row_Number T22 167,956 132,579 554,642
GDD_Anth _Long T23 150,234 130,778 591,526
GDD_Anth_Short T24 164,127 122,255 640,282
GDD_Anth_Photo_Resp T25 159,969 120,768 691,542
GDD_Silk_Long T26 163,678 130,114 580,472
GDD_Silk_Short T27 162,665 130,710 624,963
GDD_Sik_Photo Resp T28 154,231 115,941 673,853
SLB T29 164,783 129,207 610,486
Days_To_Anthesis T30 159,054 130,507 577,097
ChlorophyllA T31 156,771 130,643 541,779
ChlorophylIB T32 172,509 119,504 701,721
Malate T33 164,180 133,006 540,370
Fumarate T34 165,037 126,789 651,454
Fum2 T35 173,892 124,777 657,173
Glutamate T36 157,213 138,957 580,812
Amino_Acids T37 167,341 132,337 572,995
Protein T38 162,263 128,924 687,760
Nitrate T39 158,667 140,264 629,072
Starch T40 160,254 133,203 613,835
Sucrose T41 158,926 129,010 609,554
Glucose T42 164,502 124,720 615,003
Fructose T43 162,445 125,856 637,147
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Supplementary Dataset

Dataset S1. Spreadsheet with data used for fractionation analysis. Data show the exon count

matrix, genomic coordinates of regions syntenic with sorghum, and loci used for the GO
analysis.
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