1

1	The Complete Genome Sequence of Campylobacter jejuni Strain S3
2	
3	Kerry K. Cooper ^{1*} , Margarethe A. Cooper ¹ , Andrea Zuccolo ² , Bibiana Law ¹ and Lynn A. Joens ¹
4	
5	¹ Department of Veterinary Science and Microbiology, University of Arizona, 1117 E. Lowell
6	St., Tucson, AZ 85721, USA
7	² Arizona Genomics Institute, School of Plant Sciences, BIO5 Institute, University of Arizona,
8	Tucson, AZ 85721, USA
9	
10	
11	
12	
13	*Corresponding Author:
14	Department of Veterinary Science and Microbiology, University of Arizona
15	1117 E. Lowell St., Tucson, AZ 85721
16	Telephone: (520) 626-4148
17	Fax: (520) 621-6366
18	Email: kcooper@email.arizona.edu

19 Abstract

20	Campylobacter jejuni is one of the leading causes of bacterial gastroenteritis in the world;
21	however, there is only one complete genome sequence of a poultry strain to date. Here we report
22	the complete genome sequence and annotation of the second poultry strain, C. jejuni strain S3.
23	This strain has been shown to be non-motile, a poor invader in vitro, and a poor colonizer of
24	poultry after minimal in vitro passage.
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	Key Words

36 Campylobacter jejuni, S3, poultry, genome sequence

37	Campylobacter jejuni strain S3 is a poultry isolate that was originally cultured from the
38	feces of a chicken (9, 10), and has been shown to be non-invasive to weakly invasive in vitro
39	(11). It is non-motile and was originally described as an effective colonizer of poultry (10, 14);
40	however, after minimal passage in the laboratory, it no longer effectively colonizes poultry.
41	Using 454 pyrosequencing technology on a GS FLX system (Roche Diagnostics, Branford, CT)
42	with approximately 26-fold coverage of the entire genome, the complete genome sequence for C.
43	jejuni S3 was determined. The initial genome assembly was based on 203,253 reads, and used
44	the Newbler Assembler software which generated a total of 29 large contigs (>500 bp). The
45	initial genome assembly was then compared and complemented using the Celera Assembler
46	software (12) resulting in a total of 11 large contigs (>2500 bp). The large contig sequences were
47	then analyzed for low consensus quality base pairs using the Consed program (6), and any
48	erroneous nucleotides were removed. The large contigs were then organized, aligned and the
49	remaining gaps determined via MUMmer 3.0 software (3) using the genome sequence of C .
50	jejuni RM1221 (13) as a scaffold.
51	Gap closure was accomplished by primer walking from the large contig sequences and
52	genomic PCR, with the resulting products sequenced using Sanger DNA sequencing on a 3730
53	DNA Analyzer (Applied Biosystems, Carlsbad, CA). Following construction of a single
54	genomic contig, the sequence was submitted for automatic genome annotation via the RAST
55	server (1). Transfer RNA (tRNA) and ribosomal RNA (rRNA) genes were then annotated
56	through the use of tRNAScan-SE 1.21 (8) and RNAmmer 1.2 (7) programs respectively.
57	Additionally, identified open reading frames (ORF) were confirmed by homology BLAST

58 searches of the NCBI database.

59	The circular chromosome of C. jejuni S3 is composed of 1,681,364 bp with a G+C
60	content of 30.49%, and includes 1,761 putative protein-coding genes or ORFs. Furthermore, the
61	S3 genome contains 28 predicted pseudogenes, 3 rRNA operons and a total of 44 tRNA genes
62	covering all amino acids. Campylobacter jejuni S3 also contains a single plasmid that is
63	analogous to the large tetracycline resistance plasmid (pTet) found in C. jejuni 81-176 (2). The
64	S3 plasmid has 43,222 bp with a G+C content of 28.99% and contains 49 putative ORFs.
65	The C. jejuni S3 genome contains parts of two of the recently identified Campylobacter
66	jejuni-integrated elements (CJIEs) (13), including 28 genes (45.9%) of CJIE1 and 47 genes
67	(82.5%) of CJIE4. Campylobacter jejuni S3 CJIE1 also contains 28 genes that are not found in
68	C. jejuni RM1221, while CJIE4 from C. jejuni S3 is very similar. C. jejuni S3 is easier to
69	genetically manipulate (L.A. Joens, unpublished data) than C. jejuni RM1221 (4, 5), thus
70	allowing for mutagenesis work with this strain. Overall, the complete genome sequence of C .
71	<i>jejuni</i> S3 will be an effective tool for characterizing genes present in CJIE1 and CJIE4, other
72	genes shared by C. jejuni RM1221 and C. jejuni S3, as well as genes unique to C. jejuni S3.
73	
74	
75	
76	
77	
78	
79	

4

80 Nucleotide sequence accession number

81	The complete genome sequence of C. jejuni strain S3 is accessible at GenBank under the
82	accession number CP001960, and the entire S3_pTet plasmid sequence can be accessed under
83	the GenBank accession number CP001961.
84	
85	
86	
87	
88	
89	
90	
91	
92	
93	
94	
95	
96	
97	

98 Acknowledgements

99	This work was funded by the Arizona Agricultural Experiment Station of the College of
100	Agriculture and Life Sciences at the University of Arizona.
101	
102	
103	
104	
105	
106	
107	
108	
109	
110	
111	
112	
113	
114	
115	
116	

117 **References**

118	1.	Aziz, R. K., D. Bartels, A. A. Best, M. DeJongh, T. Disz, R. A. Edwards, K. Formsma, S.
119		Gerdes, E. M. Glass, M. Kubal, F. Meyer, G. J. Olsen, R. Olson, A. L. Osterman, R. A.
120		Overbeek, L. K. McNeil, D. Paarmann, T. Paczian, B. Parrello, G. D. Pusch, C. Reich, R.
121		Stevens, O. Vassieva, V. Vonstein, A. Wilke, and O. Zagnitko. 2008. The RAST Server: rapid
122		annotations using subsystems technology. BMC Genomics 9:75.
123	2.	Batchelor, R. A., B. M. Pearson, L. M. Friis, P. Guerry, and J. M. Wells. 2004. Nucleotide
124		sequences and comparison of two large conjugative plasmids from different Campylobacter
125		species. Microbiology 150:3507-17.
126	3.	Delcher, A. L., S. L. Salzberg, and A. M. Phillippy. 2003. Using MUMmer to identify similar
127		regions in large sequence sets. Curr Protoc Bioinformatics Chapter 10:Unit 10 3.
128	4.	Gaasbeek, E. J., J. A. Wagenaar, M. R. Guilhabert, J. P. van Putten, C. T. Parker, and F. J.
129		van der Wal. Nucleases encoded by the integrated elements CJIE2 and CJIE4 inhibit natural
130		transformation of Campylobacter jejuni. J Bacteriol 192:936-41.
131	5.	Gaasbeek, E. J., J. A. Wagenaar, M. R. Guilhabert, M. M. Wosten, J. P. van Putten, L. van
132		der Graaf-van Bloois, C. T. Parker, and F. J. van der Wal. 2009. A DNase encoded by
133		integrated element CJIE1 inhibits natural transformation of Campylobacter jejuni. J Bacteriol
134		191: 2296-306.
135	6.	Gordon, D., C. Abajian, and P. Green. 1998. Consed: a graphical tool for sequence finishing.
136		Genome Res 8:195-202.
137	7.	Lagesen, K., P. Hallin, E. A. Rodland, H. H. Staerfeldt, T. Rognes, and D. W. Ussery. 2007.
138		RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res
139		35: 3100-8.
140	8.	Lowe, T. M., and S. R. Eddy. 1997. tRNAscan-SE: a program for improved detection of transfer
141		RNA genes in genomic sequence. Nucleic Acids Res 25:955-64.

142	9.	Luo, N., S. Pereira, O. Sahin, J. Lin, S. Huang, L. Michel, and Q. Zhang. 2005. Enhanced in
143		vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic
144		selection pressure. Proc Natl Acad Sci U S A 102:541-6.
145	10.	Luo, N., O. Sahin, J. Lin, L. O. Michel, and Q. Zhang. 2003. In vivo selection of
146		Campylobacter isolates with high levels of fluoroquinolone resistance associated with gyrA
147		mutations and the function of the CmeABC efflux pump. Antimicrob Agents Chemother 47:390-
148		4.
149	11.	Malik-Kale, P., B. H. Raphael, C. T. Parker, L. A. Joens, J. D. Klena, B. Quinones, A. M.
150		Keech, and M. E. Konkel. 2007. Characterization of genetically matched isolates of
151		Campylobacter jejuni reveals that mutations in genes involved in flagellar biosynthesis alter the
152		organism's virulence potential. Appl Environ Microbiol 73:3123-36.
153	12.	Miller, J. R., A. L. Delcher, S. Koren, E. Venter, B. P. Walenz, A. Brownley, J. Johnson, K.
154		Li, C. Mobarry, and G. Sutton. 2008. Aggressive assembly of pyrosequencing reads with
155		mates. Bioinformatics 24:2818-24.
156	13.	Parker, C. T., B. Quinones, W. G. Miller, S. T. Horn, and R. E. Mandrell. 2006. Comparative
157		genomic analysis of Campylobacter jejuni strains reveals diversity due to genomic elements
158		similar to those present in C. jejuni strain RM1221. J Clin Microbiol 44:4125-35.
159	14.	Sahin, O., N. Luo, S. Huang, and Q. Zhang. 2003. Effect of Campylobacter-specific maternal
160		antibodies on Campylobacter jejuni colonization in young chickens. Appl Environ Microbiol
161		69: 5372-9.
162		
163		